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Robot–Camera Calibration in Tightly Constrained
Environment Using Interactive Perception
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and Yun-Hui Liu , Fellow, IEEE

Abstract—Manipulation in tight environment is challenging but
increasingly common in vision-guided robotic applications. The
significantly reduced amount of available feedback (limited visual
cues, field of view, robot motion space, etc.) hinders solving the
hand-eye relationship accurately. In this article, we propose a new
generic approach for online robot–camera calibration that could
deal with the least feedback input available in tight environment:
an arbitrarily restricted motion space and a single feature point
with unknown position for the robot end-effector. We introduce
the interactive perception to generate prescribed but tunable robot
motions to reveal high-dimensional sensory feedback, which is not
obtainable from static images. We then define the interactive fea-
ture plane (IFP), whose spatial property corresponds to the robot-
actuating trajectories. A depth-free adaptive controller is proposed
based on image feedback, where the converged orientation of IFP
directly harvests the data for solving the hand–eye relationship.
Our algorithm requires neither external calibration sensors/objects
nor large-scale data acquisition process. Simulations demonstrate
the validity of our method to accurately calibrate different types
of robot under various system set-ups. In experiments, we show
good results of our algorithm in terms of accuracy and consistency
under tight motion space compared to existing approaches using
external objects and/or optimization.

Index Terms—Adaptive control, interactive perception (IP),
robot–camera calibration, surgical robotics.

NOMENCLATURE

ζ Robot’s preset target path.
P Robot’s target trajectory upon ζ.
Ψ Active interaction parameter space.
s Scalar describing the robot’s instant target state.
ψ Scalar parameter representing the orientation of ζ.
x Robot’s instant state.
pζ Robot’s instant target state induced by P .
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pζ Description of pζ w.r.t. end-effector frame.
r/w Robot’s (instant) position/orientation.
rζ/wζ Robot’s (instant) target position/orientation.
rζ/wζ Robot’s (instant) local target position/orientation.
v Vector describing the position of rζ from r0.
mζ Position of the world feature from the robot.
Rζ Rotation matrix from p0 to pζ .
cλ Feature depth from the camera.
y Position of the world feature on 2-D image.
b vector of the virtual fiducial line on 2-D image.
d Signed distance of y w.r.t. b.

I. INTRODUCTION

TASK automation entails complex interactions between the
robot and working environment. To provide feedback for

these interactions, many robots include one or multiple cameras
to enable vision-guided operations [1], [2], which requires the
spatial transformation between the camera(s) and robot(s). This
is regarded as the robot–camera calibration process where the
estimated transforms enable the expression of sensor data in a
common reference frame.

In most approaches, the model for robot–camera calibration
could be mathematically interpreted as solving the AX = XB
equation, where acquiring at least two linearly-independent end-
effector poses (i.e., varying A and B) could solve the unknown
robot–camera relationship X [3], [4], [5]. Calibration objects
are commonly introduced to generate robust and information-
revealing visual measurements. Additional sensors of different
modalities, such as optical tracking system [6] and depth sen-
sor [7] could also assist improving calibration accuracy.

However, a significant challenge that many vision-guided
robotic operations are commonly facing is the tightly con-
strained working environment. In robot-assisted minimally in-
vasive surgery [8] or assembly of miniaturized targets [9], for
example, the in-vivo environment or narrow pipes/passages are
highly enclosed and cluttered. To avoid severe robot downtime,
robot–camera calibration should be performed in situ, which
prevents external calibration objects or sensors. The field of
view of camera is magnified and the end-effector becomes only
partially visible [7], [10], while the tight environment renders the
data degenerated in parameter space, which hinders the amount
of available feedback [11]. Apart from providing a solver, the
algorithm should be insensitive to the abovementioned issues
as well. Therefore, devising a new robot–camera calibration
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approach to systematically address the abovementioned issues
becomes crucial for more generic applications.

In this article, we propose a generic approach for robot–
camera calibration, which could deal with tightly constrained
environments. To adapt to the induced limited visual feedback,
we consider the least visual cue possible: a sole salient feature
point to be captured by a monocular camera. Neither any cal-
ibration objects nor other sensors are available. To complete
the calibration process, we leverage the concept of interactive
perception (IP) by initiating the robot with prescribed motion
patterns to reveal visual feedback with high-dimensional spatial
information. We first propose the interactive feature plane (IFP)
and its parameter space to fully characterize the spatial property
of the robot trajectory. Then, we develop an adaptive depth-free
controller fed by the IP-induced 2-D feature error to achieve
interactive and stabilized regulation of the IFP parameters from
visual guidance. Here, the controller could enforce the robot
end-effector motions to a (spherical) space volume of arbitrary
size. The controller converges the robot motions to prescribed
image features during data collection, despite the unknown 3-D
position of the feature. The regulated IFPs through individual
trials harvest the 3-D vectors for computing the rotation matrix in
a closed-form manner via singular-value decomposition (SVD),
which does not require a “good” initial guess. Note that we
are unaware of any existing works addressing such constrained
environment or using IP to solve this problem. Finally, we
validate our framework in both simulations and experiments to
show the accuracy, consistency of our algorithm under different
environment constraints.

A preliminary study related to this work has been reported in
our previous work [12] but only applies to surgical robots, while
this work greatly improves the model to make it applicable to
any types of 6-DoF robot manipulators. The main contributions
of this article include the following.

1) Proposition of the IFP as a novel concept to bridge the
robot–camera relationship.

2) A depth-free adaptive controller that online regulates the
spatial property of the robot trajectory using image feed-
back.

3) A closed-form solver of rotation matrix based on regulated
IFPs and SVD.

4) Extensive experiments using both simulation and real-
word robot platforms to show the applicability of our work.

We also highlight the distinctive advantages of our work in
terms of the relaxed assumptions for good practicality.

1) It works in highly restricted motion space, which could be
user-specified (a 1-cm-diameter sphere suffices).

2) It uses only a single feature point with unknown 3-D
position as the visual cue.

3) No external sensors, calibration objects are required.
4) Neither prior knowledge (e.g., CAD model or the feature

position) nor offline training process is required.
5) The procedure is autonomous and extendable to solving

eye-in-hand and robot-to-robot calibration problem.
6) Its efficient process (∼1 min) allows online calibration.
The rest of this article is organized as follows. Section II

provides the review of related works and summary. Sections III

and IV are dedicated to the new robot–camera model of our
method using the IFP and the image-guided adaptive controller
for data collection. Section V explains the parameter identifi-
cation for calculating the final calibration result. Sections VI
and VII demonstrate the validity of our approach through ex-
tensive simulations and experiments, respectively. Section VIII
provides the discussions. Finally, Section IX concludes this
article.

II. RELATED WORK

Robot–camera calibration for industrial robot manipulators
has been actively studied through decades under a variety of
applications [13]. Typical steps include modeling, measurement,
identification, and compensation. One popular framework is to
use a planar calibration object to derive 3-D information from
single images. It is adopted by classic works including [3], [14],
[15], [16] that solve the AX = XB with linear solutions upon
either single-stage or dual-stage estimation. Daniilidis et al.
[17] introduced dual quaternion representation to simultane-
ously solve rotation and translation to avoid propagation error.
These works provide analytical solvers to recover the transfor-
mation matrix. There are also works that introduce iterative
approaches using linear matrix inequality [18], or nonlinear
optimization [19], [20], [21]. Zhao [22] further formulated the
calibration problem into convex optimization where a global
solution could be obtained. There are also works in [13] and [23]
that characterize the problem using AX = ZB and solve it by
iterative methods. In [24], different types of calibration objects
have been used for providing visual measurements. Researchers
in [25] and [26] further develop data selection policy and report
its superior performance compared to manual and/or random
selection. Maye et al. [11] further introduced an information-
theoretic method to optimize data collection sequence to achieve
improved accuracy of online calibration. Note that all the above-
mentioned works require the camera to capture preset calibration
objects and could only be performed offline, which is also
the case for robot-to-robot calibration in [27] and [28]. The
dependence of calibration objects also implies a free workspace
to generate enough spatial disparity in data collection, which is
unfriendly to spatially confined environment but has not been
evaluated by existing works. More comprehensive reviews of
existing robot–camera calibration approaches could be referred
to [1], [29].

Recently, many works aim to tackle robot–camera calibration
without using calibration objects. For example, the works in [11],
[30], [31], [32], and [33] suggested analyzing the visual rigidity
of the world scene during data collection to establish con-
straints for parameter estimation without using known patterns.
However, this requires substantial features within the visual
environment and is not guaranteed under limit field of view.
Koide et al. [34] approached hand-eye calibration by directly
minimizing the reprojection error of an observed image, which
does not have to contain specific patterns. However, a known
planar image is still required to generate back-projection errors.
Moreover, efforts have been made to tackle robot–camera cali-
bration based on vision-based pose estimation of the observed
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3-D objects [35], where the pose estimation process requires a
preset database to the target objects, which involves considerable
offline workload. Gratal et al. [36] and Hu et al. [37] introduced
the LED and line laser, respectively, to generate light pattern for
calibration instead of physical objects.

Online robot–camera calibration in tight environment is par-
ticular required by surgical robots in surgeries. To tackle such
issues, Ye et al. [38] and Allan et al. proposed iterative estimation
of the eye-to-hand relationship based on back-projection errors
to estimate the pose of the robotic surgical instruments. However,
both algorithms require reasonable initialization and intensive
computation (either costing∼1 s or requiring a workstation-level
PC for real-time computation). The works in [39] and [40]
utilized remote center-of-motion (RCM) kinematic constraints
of the surgical robot such that natural appearance of the robot
could be directly used as visual measurements. However, the
calibration accuracy does not suffice robot automation of deli-
cate surgical procedures (> 10 mm in translation error). In [41],
a 2.0 mm robot positioning accuracy is achieved, but relied on
both the external calibration object and optical tracking system.
Roberti et al. [42] further performed robot–camera calibration by
introducing the RGB-D sensor, which is difficult to be integrated
in the confined space in minimally invasive set-ups. Richter
et al. [10] considered the (internal) kinematic sensing errors
from the joint data by using a new parameter for evaluation.
Experimental validations are conducted on different types of
robots. However, the algorithm depends on multiple preset visual
features on the robot end-effector, which need to be tracked by
a trained learning algorithm.

III. PROBLEM FORMULATION

Our approach targets a general 6-DoF serial robot manipulator
whose end-effector could perform motion in full SE(3) space.
This indicates that mainstream manipulators including 6-DoF
PUMA-like robots, SCARA-like robots, and articulated robots,
such as the da Vinci surgical system (dVSS), and RAVEN robot,
are all qualified. It could also be applied to any redundant robot
manipulators with N DoFs (N > 6), as long as it owns SE(3)
workspace. A precalibrated monocular camera is used to ac-
quire visual feedback, whose configuration regarding the robot
could be either eye-to-hand or eye-in-hand in our calibration
(eye-to-hand as in our validation). The abovementioned set-up
is commonly adopted by many robot applications.

As mentioned, tight environment brings two primary con-
straints to solving robot–camera calibration: the limited robot
motion space and the limited amount of visual feedback avail-
able. Without loss of generality, we assume the simplest form of
visual cue: a single salient world point fixed on the end-effector
(i.e., drivable by the last robot joint), whose relative position
from the end-effector should be unknown as well. This suggests
that such point could be selected based on any features available
on the robot structure, e.g., a bolt endpoint, a manually labeled
dot, or even a firm stain. Note that, these have been rarely ex-
plored by existing approaches, but practically demanded by tasks
such as inspection of pipes or passages, or robotic surgery in
in-vivo environment. They mutually own a highly concentrated

operating space plus the highly limited field of view of the
camera, where only a part of end-effector is visually observ-
able. Then, the ultimate goal is to complete the robot–camera
transformation by solving the following well-adopted term:

Tc =

[
Rc tc
01×3 1

]
∈ R4×4 (1)

where Rc ∈ R3×3 and t ∈ R3
c denote the rotation matrix and

translation vector. The proposed approach yielding the above-
mentioned formulations should also be easily extended to data-
sufficient scenarios, e.g., multiple feature points, line segments,
or multicamera/-robot set-ups.

In this article, we use the italic lowercase letters or Greek
alphabets to denote scalars s. A vector and a matrix will be
denoted by bold lowercase letter or Greek alphabet and bold
capital letter, respectively, (x/η as vectors, T as a matrix).
Particularly, the list of defined variables in our modeling to
be appeared in this article is shown in the Nomenclature for
reference.

IV. INTERACTIVE PERCEPTION

IP, apart from the concept of active perception, aims to in-
troduce deliberate actions to the robot manipulating target(s)
whose motions are online reactive to corresponding sensor-
based measurements. This could reveal additional sensory feed-
back, which is otherwise unavailable if we merely record the
instant input–output data. The concept of IP has been systemat-
ically addressed in the work [43] and has been widely applied to
robot manipulation tasks involving physical interactions to the
environment [44], [45]. As we only rely on a single feature point
in this work, IP is potentially powerful to increase the dimension
of image feedback to 2-D or 3-D geometry. In the following part
of this section, we will propose an IP model with its control
strategy to solve robot–camera calibration.

A. Robot Actuation Model

First, we define P(ζ, ·) as a predefined and online-tunable
spatial trajectory with its geometric path denoted by ζ to initiate
IP, active interaction space and its parameters

Ψ =
[
s(t) ψ(t) φ

]ᵀ
(2)

where s(t) is the bounded and C 2-continuous timing func-
tion that parametrizes the evolution of pζ(·) to determine the
trajectory P(ζ,Ψ(t)). φ ∈ R is the motion space constraint
that rigorously restricts the robot actions subject to ζ within a
spherical space (φ being the radius) throughout data acquisition.
The sphere is assigned relative to the initial position of the
robot end-effector, and φ could be arbitrarily selected as long
as meeting the tight environment. ψ is the scalar that describes
the spatial orientation of P . During robot–camera calibration,
P should be ideally fed to the output space of the robot’s
end-effector in the sense that

P =
{
x ∈ R6 | s(t) ∈ [ss, sf ], ψ(t), φ(t) �→ x = pζ(Ψ(t))

}
(3)
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where x denotes the state of the robot described in Cartesian
space, and pζ(·) ∈ ζ is the instant path descriptor varied by
s(t). To facilitate IP to provide useful sensor information for
robot–camera calibration under data-deficient scenarios, the
property of P should satisfy certain constraints to generate new
valid visual feedback propagated from a single point. Here, we
propose that a path ζ could be qualified as a candidate IP path
if it simultaneously satisfy the following properties.

1) P is of C1 continuity subject to a second-order differen-
tiable s(t).

2) The path ζ of P is planar in 3-D Cartesian space given any
constant ψ.

3) The path ζ of P is convex.
Now, we start the robot model by giving the notation of the robot
kinematics x as follows:

x =
[
r(q(t)) w(q(t))

]
= f(q(t)) (4)

where r(q(t)) ∈ R3 and w(q(t)) ∈ R3 ⊆ so(3) denote the po-
sition and orientation of the robot’s end-effector, respectively.
q(t) indicates the generalized joint state of the robot. Then, one
can compute an instant ideal robot state relative to a known initial
joint state q0 as follows:

pζ,q0
(Ψ(t)) = xq0

+

⎡
⎣Rq0

· φ(t)R†(ψ(t))rζ(s(t))︸ ︷︷ ︸
v

wζ(t)

⎤
⎦ (5)

where rζ(·) denotes the path descriptor relative to the local
frame, wζ(t) is the orientation along the path to be assigned.
v(·) ∈ R3 is the 3-D vector that calculates the instant target
point of trajectory P over time with respect to xq0

. xq0
denotes

the robot state computed by q0. Here, we assign a simple
user-defined form of R†(ψ(t)) as1

R†(ψ(t)) =

⎡
⎣1 0 0
0 cosψ(t) −sinψ(t)
0 sinψ(t) cosψ(t)

⎤
⎦ . (6)

From (5), the target trajectory is set to be described based on
the robot’s initial state, allowing on-demand recalibration upon
a given instant configuration during a task, where a suitable
workspace could be arbitrarily selected. Here, we name the
3-D plane that contains the path ζ as the IFP. Its orientation
is then defined by Ψ(t), which is to be online interacted to
visual feedback and plays a crucial role to bridge robot–camera
relationship.

Consider a (sole) world feature pointm ∈ R3 mounted on the
end-effector. In order to achieve image-guided IP, the prescribed
path ζ generated by (5) is propagated to the feature point, which
further suggests

mζ,q0
(Ψ(t)) = rζ,q0

(Ψ(t)) +Rq0
Rζ(wζ)tm (7)

where mζ,q0
(·) is the target 3-D position of the feature to

be guided by the robot while deploying IP, rζ,q0
(·) ∈ R3 is

the position part of pζ,q0
(·), Rζ(wζ) denotes the composite

rotation matrix computed from the user-defined orientation wζ

1The form of R· does not have to be complex, as long as the varying ψ(t)
could lead to orientation change of v to generate effective image feedback.

Fig. 1. Geometric interpretation of the robot–camera interaction model.

in Euler-angle form. The term tm ∈ R3 represents the unknown
but constant position of the feature m with respect to the robot
end-effector (geometric interpretation as shown in Fig. 1).

B. Visual Feedback Model

Given the interaction input provided by the robot, we then
need to correlate the robot actions to the feature despite the
unknown information of m from the robot end-effector and
the robot–camera transformation matrix. Consider m to be
observable by the camera as y ∈ R2 on the image. Its possible
3-D position with respect to the camera is computed as follows:[

yᵀ(·) 1
]ᵀ

= cλ(mζ,q0
(·))KT−1

c (rζ,q0
(Ψ(t))) + tm) (8)

where K ∈ R3×3 is the intrinsic matrix of the camera upon
pinhole projection model,2 cλ ∈ R is the parameter that contains
unknown depth information of m subject to Tc and tm in a
nonlinear expression. Thus, unlike calibration using external
objects, direct recovery of 3-D sensory feedback by solely
inspecting static y through individual images now becomes
impossible. To tackle this issue, additional visual reference
should be introduced to extend the dimension of the feedback
that interprets the relationship between the robot and the camera.
As basis of previous modeling, we define a virtual fiducial line
(VFL), which contains a 3-D line segment in which the robot
motion stays at the start of the calibration process. Its appearance
on the 2-D image denoted by lr is further parametrized by the
following vector:

br = yζ,f (·)− yζ,s(·) (9)

where yζ,s and yζ,f denote the projection of m evaluated at
s = ss and s = sf , respectively, which are inherently available
while the robot performs trajectory tracking guided by pζ(·).
Then, we could interpret the scaled “point-to-line” distance
between the VFL lr and the projected feature y

d(y) = b(y)ᵀbr⊥ (10)

where br⊥ denotes the (anticlockwise) perpendicular vector of
br, b(y) = y − yζ,s, which varies over time subject to robot

2As we have assumed calibrated camera intrinsics, the distortion of the
captured image for detecting the feature point has been identified and rectified
in advance for the later data acquisition.
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Fig. 2. Illustration of the interactive control process, where (a) orientation
regulation of the IFP in 3-D space, and (b) corresponding convergence of the
feature y to the VFL lr as the robot control input.

actuation. Note that,d represents the signed distance between the
feature point and the VRL without normalization. This is to avoid
abrupt change of d while its norm approaches 0. Additionally,
the sign of d(y) ∈ R subject to the robot-actuating feature m is
consistent for all s ∈ [ss, sf ] given a convex path ζ with respect
to the VFL lr in (7). As the curve of path ζ is convex, its enclosed
area with lr is still convex [46] in the 2-D image. This suggests
the projection of ζ always stays within one side of lr except the
interception points, i.e., when s = ss and s = sf (refer to Fig. 1
for illustration).

C. Adaptive Interaction Control

Now, we aim to devise an robot control strategy such that the
property of the IP-relevant motions described byΨ is tunable by
the visual feedback model despite the presence of unknown T
and tm. Here, as ζ is assumed a planar path itself in Section IV-A,
we expect the IP to online tune the orientation of the path (via
ψ) based on image feedback, until the projected trajectory of the
feature point m on the image stays within the projected 2-D line
of lr. We will also show this leads ψ converged to a constant
value, namely ψc (see Fig. 2 as conceptual demonstration of
the expected control process). To start with, we differentiate the
model of the VRL lr such that

bᵀ
r⊥ ḃ(y) = η(mζ)ṁζ (11)

where η(·) : R3 → R maps the linear velocity of the prescribed
feature motion ṁ to its resultant change rate of the scaled
distance d on the image, with

η(·) =
cλ(mζ)−mζr

ᵀ
3

cλ2(mζ)
bᵀ
r⊥KT−1

c (12)

where r3 is the third row inR ∈ R3×3, which is unknown during
IP. Meanwhile, taking the derivative of (7) and substitute to (11)
could further lead to the following relationship:

ḋ = η(mζ)

(
∂rζ,q0

∂Ψ
(Ψ(t))Ψ̇+Rq0

Ṙζ(wζ(t))tm

)
. (13)

Note that, by inspecting (13), ḋ(t) contains the unknown term
tm, which is coupled with the unknown constants in η(·)
and might not be accurately identified. This will render the
robot-enabled state w(t) to be uncontrollable. However, as the
property of the path ζ could be manually selected, such issue is
solvable by enforcing w(t)ζ ≡ 03×1 such that Ṙζ(wζ(t)) = 0.
This physically means that, we enforce the orientation of the
robot end-effector upon ζ to be identical to w0 while the robot is
tracking the trajectory. This further indicates that the orientation
of the end-effector wζ(t) throughout the data collection part
remains identical to w0 in x0. This is necessary to provide a
convergable data input in VFL while the position of m on the
end-effector is unknown.

As stated, the calibration is to be conducted in confined
environment where the robot workspace should be restricted,
we could simply select a constant motion magnitude φ such that
φ̇ ≡ 0. Meanwhile, as the timing function s(t) inΨ is preset, we
could further arrange (13) into a mapping independent of only
controlling variables

ḋ(·) = φη(mζ)
∂rζ,q0

∂Ψ
(Ψ(t))H(ṡ(t))︸ ︷︷ ︸

A(·)

h(ψ̇(t)) (14)

where

H(ṡ) =

⎡
⎣ṡ 0
0 1
0 0

⎤
⎦ , h(ψ̇) = [

1

ψ̇

]
(15)

leaving the path orientation ψ being the final tunable variable
during IP. The equation in (14) states an important relationship
about how the variation of the trajectory (enabled by s and path
property regulated byψ andφ) could affect the change of image-
based feedback via online measurement of the sole feature y.
It allows us to perform active regulation of interaction space
parameters Ψ until the image feedback satisfies a condition that
implies robot–camera relationship.

Now, we need to introduce a parameter regulator to determine
the dynamics of ψ such that the IP-induced motion could not
only generate useful visual feedback of d but also regulate the
property of the IFP containing the trajectory P via (14). This
should be achieved with the presence of unknown parameters.
By inspecting (12), it is noticeable that Tc and the elements of
tm solely appear as the factored form inη(·). Thus, the mapping
in (11) could be algebraically arranged into

ḋ(·) = W(rζ(t),Ψ(t), Ψ̇(t))θ (16)

where W(·) ∈ R1×1 is the regressor matrix constructed by
known or measurable variables. Note that θ ∈ Rl is a column
vector from which the elements are computed as a composite
form of tm and Tc. As we assume to know no prior knowledge
of them, we must estimate θ online instead of tm and Tc

while reacting to the visual feedback d. Denote an estimation
of the unknown parameter vector by θ̂, then we could define the
following error vector flow:

ed = W(·)(θ̂ − θ) = WΔθ (17)
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where the error ed ∈ R2 is continuously measurable from 2-D
image, which is explicitly attributed to the estimation error Δθ.
By proposing the following update rule:

d

dt
θ̂ = −κW(·)ᵀed (18)

could lead the feedback flow of ed to be stably converged to
zero, with κ ∈ R is the positive-definite tuning matrix for the
update steps. Moreover, the updating rule in (18) results in stable
convergence of θ. This could be proved by initiating a Lya-
punov function in quadratic form {V ∈ R | V = 1

2ΔθᵀΔθ}.
Then, differentiating V combining with (17) could lead to V̇ =
−edκ2W(·)W(·)ᵀed ≤ 0, which is passive and Lyapunov-
stable [47]. However, the online estimation process of θ that
contributes to minimization of ed does not necessarily indicate
an accurate recovery of the elements value θ, as the main purpose
of such adaptive estimation is to enable convergent performance
of the online regulation ofψ subject to IP-induced robot motions.
Thus, we propose a new regulator to independently determine
the dynamics of d, which is reactive to the visual feedback d

h(ψ̇) = − γ

||r1||A
+(mζ ,Ψ(t))d(t) (19)

where ||r1|| > 0 normalizes the first component of the subse-
quent term to enforce the homogeneous form of h(ψ̇) in (15),
γ ∈ R is the constant positive gain, A+(·) ∈ R2×1 denotes the
pseudoinverse of A(·).

Theorem 1: The regulator of h(ψ̇) in (19) stably tunes the
orientation of the IFP, which eliminates the distance between y
and the VRL as br, i.e.:

lim
t→∞ ||d(t)|| = 0. (20)

Proof: Consider the following dynamics of d subject to (11) fed
by the above regulator:

ḋ(t) = − γ

||r1||A(·)A+(·)d(t) (21)

where the factored term of d(t) is obviously a negative real
scalar. Thus, the dynamics in (21) is passive, which decreases
d(t) to zero.

Up to now, the vision-guided IP model between the robot
motion trajectory and its visual feedback is completed. We have
initiated a robot-enabled trajectory P with its path ζr and evolu-
tion s(t), and then utilize (19) to achieve interactive regulation
of the orientation of the path ζr based on visual feedback d(t).
The regulation of ψ could stably minimize d(t) to zero via
adaptive estimation of (18) regardless of the unknown depth of
the feature m with respect to the camera. Before we proceed to
how the dynamics (21) contributes to the robot–camera calibra-
tion, a controller must be designed to guide the robot to follow
the time-varying trajectory P such that the above IP-enabled
motions could be tracked. Note that, from (7), the robot-actuated
motion x(q) is further determined by the world feature point
mζ,q0

(Ψ(t)) to achieve vision-guided IP. Here, we propose the

Fig. 3. Overall diagram of IP for data collection.

following robot controller:

u = − J−1(q(t))Γ

[
(r(t)− xq0

− φRq0
v(Ψ(t))

03×6

]

− φJ−1(q(t))

[
Rq0

∂v

∂Ψ
(Ψ(t))Ψ̇(t)

03×6

]
(22)

where J(q(t)) ∈ R6×6 denotes the Jacobian matrix from (4),
Γ ∈ R6×6 is the positive-definite gain matrix, ψ̇ corresponds to
the first element of the normalized term in h(ψ̇). Meanwhile, if
we define the control input as u(t) = q̇(t), the controller (22)
leads to the following theorem.

Theorem 2: The robot motion initiated by (22) guarantees
stable tracking of the robot-mounted feature point m(q(t)) to
its IP-induced trajectory as mζ,q0

(Ψ(t)), i.e.:

lim
t→∞ ||m(q(t))−mζ,q0

(Ψ(t))|| = 0. (23)

Proof: See Appendix A.
Meanwhile, the orientation term wζ in (36) could also be

tracked as ẇ − ẇζ + Γ(w −wζ) = 03×1 whose asymptotic
stability to w = wζ is guaranteed, as we have assigned an
unchanged orientation ofRq0

, with ẇ(q(t)) = 03×1. This indi-
cates that the controller u deployed to the robot joint velocities
could lead to the motion of the feature point m to stably track
the prescribed IP-relevant trajectorymζ despite the unknown tm
(achieved by wζ(t) = w0). In addition, the motion contributes
to an adaptive image-guided feedback convergence of d(t) to
0 subject to online tuning of ψ. The overall IP-based data
acquisition process is referred to Fig. 3 . The IP model not only
facilitates image-based robot control but is also able to deal
with the unknown tm during orientation regulation of IFP. In
the following section, we will elaborate how the collected data
is interpreted to solve the robot–camera transformation matrix
Tc.
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V. IDENTIFICATION

A. Data Interpretation

Now, we seek to recover the spatial relationship between the
robot and the camera using the results harvested by IP-based
motions. Consider a settled d(t) to 0 subject to the controller u
in (22). By inspecting the mapping (14), the change of ψ̇(t), or
the orientation of the IP-induced path ζr, is minimized to 0 as
well. Thus, the following implication holds:

ψ(t) → ψc ⇐= d(t), ḋ(t) → 0 (24)

where ψc is a constant under a given xq0
and the property of

ζr. This implies that the orientation of the IFP πr is also settled,
whose normal vector could be computed as follows:

nζ(φ, ψc) =
v(φ, ψc, s1)× v(φ, ψc, s2)

||v(φ, ψc, s1)|| ||v(φ, ψc, s2)||
s.t. s1, s2 ∈ [ss, sf ], s1 < s2 (25)

from which one could further transform it to the robot base as
nπ,ζ = Rq0

nζ(φ, ψc). Meanwhile, as d stably converges to 0,
the projection of the IFP subject to path ζr on the image is
exactly the 2-D line described by yζ,s and yζ,f . Denote their
3-D positions with respect to the camera (on the focal plane) as
cs ∈ R3 and cf ∈ R3, they could be computed from the camera
intrinsic parameters as

cs = fK−1
[
yᵀ
ζ,s 1

]ᵀ
, cf = fK−1

[
yᵀ
ζ,f 1

]ᵀ
(26)

where f ∈ R is the focal length. Thus, the orientation of the IFP
under the settled ψc is also computable

cnζ =
cs × cf

||cs × cf || (27)

with cnζ ∈ R3 denotes the identical IFP represented relative to
the camera. This states an important point that the IFP enables
the feedback interpretation from d(t) to expand the dimension
of the accessible data from 2-D (a single feature point m) to 3-D
(IFP normal vectors) by using IP. This is otherwise unavailable
to static, noninteraction image feedback where planar patterns
must be introduced, which normally appears in existing robot–
camera calibration approaches.

B. Parameter Solver

At this stage, we elaborate how to recover the robot–camera
transformation matrix based on the abovementioned results.
Without loss of generality, consider a 3-D unit-length vector
e ∈ R3 described by two unparallel Cartesian coordinate frames
F1 and F2 as 1e and 2e, respectively. Then, the rotation matrix
(notated as 1R2 ∈ R3) between such two frames also indicates
a single-step rotation operation that reorients e2 to become
parallel to e1 (or the other way around). If we describe 1R2

via axis-angle representation with a ∈ R3 as the rotary axis and
α ∈ R as the rotation angle, based on the Rodrigues’ rotation
formula [48], there exists infinite number of solutions to achieve
identical result [49]. However, it should be noted that, all pos-
sible solutions of a stays within a 3-D plane πn whose normal
vector is exactly n = ±(1e− 2e)/||1e||||2e|| [49]. If there are

nR vectors whose representations in F1 and F2 are available as

B :=
[
1e1

1e2
1e3 . . . 1en

]ᵀ
C :=

[
2e1

2e2
2e3 . . . 2en

]ᵀ
(28)

where B,C ∈ RnR×3 are the corresponding two vector groups,
we can define the cumulative error function based on the dot
product of two vectors as follows:

E =

nR∑
i=1

||a · n||2 (29)

where n denotes the (unit) normal vector of πn. Differentiating
(29) in terms of a and reformulate the result leads to⎡
⎢⎣

∑nR

i=1 x
2
i

∑nR

i=1 xiyi
∑nR

i=1 xizi∑nR

i=1 xiyi
∑nR

i=1 y
2
i

∑nR

i=1 yizi∑nR

i=1 xizi
∑nR

i=1 yizi
∑nR

i=1 z
2
i

⎤
⎥⎦

︸ ︷︷ ︸
N

⎡
⎣axay
az

⎤
⎦

︸ ︷︷ ︸
a

= 03×1 (30)

where a ∈ R3 is within the nullspace of matrix N. One could
then apply SVD to compute the best form of a in a closed-form
manner. If we further denote αi as the included angle between
the orthogonal projection of 1ei and 2ei on πn, the angle α is
derived as the arithmetic mean

α =
1

nR

nR∑
i=1

αi. (31)

Up to now, the rotation matrix between F1 and F2 is solved as
R(a, α). Aiming for robot–camera calibration problem, the two
coordinate frames explicitly correspond to the robot base frame
and the camera, respectively. The vectors fromB andC are, thus,
n pairs of 1ei = nζ,i and 2ei =

cnζ,i, and R (a, α) is exactly
the robot–camera rotation matrix. As we have demonstrated the
IP-based method to acquire one pair of them in Section IV, we
only need to vary Rq0

by additionally applying a fundamental
rotation matrix. The assigned rotation angle for collecting each
vector pair could be selected that distributes throughout 2π
based on the total number of data to be acquired. This could
minimize the in-between collinearity of the resultant projected
VRLs on the image without leading the end-effector to exceed
preset workspace by φ.

Remark 1: The process in (28)–(31) transfers the computa-
tion of the robot–camera rotation matrix by using n pairs of lo-
cally described vectors interpreted from IP-based feedback. The
nζ and cnζ are available via n times of independent IP-relevant
control process, the solver avoids dealing with a complicated
nonlinear problem. Its viability will be detailed in the following
section.

Based on the computed Rc, the translational component tc of
Tc should be further recovered. As a 3-D world point does not
generate pose information between the robot and the camera,
the estimation relies on the projected 2-D feature points. By
initiating the robot end-effector to reach randomly selected goal
states (whose leading r from r0 should also yield motion space
constraintφ), a set of 2-D image pointsyt1 and their correspond-
ing configuration space data x are obtainable. Then, incorpo-
rating the calibrated R into the robot–camera transformation,
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one could solve the remaining components for the calibration
procedure by considering the following nonlinear optimization
solver:

min
tc,tm

nt∑
i=1

ci (y(qi, tc, tm)− yi)
2

s.t. KT−1
c (tc)(ri + tm)− f ≤ 0 (32)

wherent is the preset number of data pair withnt ∈ N+, nt > 2,
and ci is the coefficient. The (nonlinear) inequality constraint ap-
peared interprets a naturally enforced condition that the feature
point must locate in front of the imaging sensor. The optimal tc
and tm are solved upon (32) by computing Hessian matrix via
dense quasi-Newton approximation [50]. Note that thanks to the
computed R, the minimization of 2-D feature differences only
involves 3-D translations and could significantly reduce chances
to reach local minima when recovering tc and tm, compared to
regarding Rc as the argument for estimation. Note also that
the data collection in this part should reject cases where the
2-D feature points are collinear to avoid degenerated feedback
input. To solve all elements in tc ofTc, the theoretical minimum
number of data pair yt and x should be 3.

Although the solver (32) finishes solving all components
required for robot–camera calibration procedure, the Rc and tc
are solved separately, or notated as the R− t approach. This is
well known to potentially cause error propagation, which might
result in low calibration accuracy especially for the end-effector
position r. However, as we will show that the abovementioned
separated estimation approach could already provide a fairly
accurate result without any initial guess, one can additionally
apply an optimization step for combined regulation of R and t
together based on the prerecorded data. The cost function writes
minR,t,tm c

∑nt

i=1 (y(qi,R, t, tm)− yi)
2 and is deployed by

considering the previous calibration result as initialization. We
notate this improved version as R− t−T approach. Such re-
finement of estimation could improve the estimation robustness
to measuring noises and kinematics model error of the robot,
which are unknown and highly coupled in our model. The
performance before/after combined optimization will be shown
in the following section.

C. Solvability

In order to provide valid robot–camera calibration results, the
solvability of the abovementioned scheme should be particularly
investigated. In terms of the rotational components in R, by
using the IFP modeling, the matrices B and C must contain, at
least, two noncollinear vectors, or nR ≥ 2. In addition, at least
one pair of vectors should not be collinear to each other. Thus,
the rank of B and C constructed by data input should be not
less than two as well. This indicates at least two independent
control processes subject to u should be deployed to minimize
d while assigning different wζ . If nR > 2, the solver for (30)
using SVD provides data fitting as of least-square method, which
is obviously solvable. It should be noted that each nζ,i and cnζ,i

might exist two possible solutions as the normal vectors of the

converged IFP. However, this could be simply sifted by comput-
ing the dot product to enforce acute included angles (invert the
vector if meeting obtuse angle). Meanwhile, the estimation of
the translation part via optimization in (32) uses the computed
Rc as a constant input. Compared to the direct blind estimation
of all components in Tc without a reasonable initialization,
a computed Rc facilitates more efficient iterations and less
likelihood to be trapped in local minima, as the 2-D reprojection
errors of the feature point along different robot configurations
is now only attributed to 3-D translation differences. The local
minima of the cost function could, thus, be significantly reduced
to avoid contradictory iterative directions of the parameters
while minimizing individual feature point errors.

In terms of the R− t−T approach, the final phase of esti-
mation refinement regards both R and t as the tuning arguments
to further minimize the residual image-based errors. As the
elements in both t and tm should be recovered, the number
of independent parameters to be solved is six, which indicates a
minimal three groups of data (robot configuration qi and feature
projection yi) suffices the estimation. At this stage, the previous
calibration results from theR− tmethod is used for initializing
the nonlinear optimization as well. This allows the iterations
to operate within local domain of the parameters around their
true values. Thus, the overall pipeline for solving robot–camera
calibration could be deployed as long as the collected data meets
the abovementioned needs.

VI. SIMULATION RESULTS

In this section, we first conduct simulation study to quantita-
tively investigate the performance of our algorithm under differ-
ent parameter set-ups. We use the CoppeliaSim v4.4.0 (Coppelia
Robotics, Ltd.) robotics simulator as the virtual validation en-
vironment, which interfaces to MATLAB R2020b (MathWorks
Inc) via external application programming interface. To compre-
hensively validate our approach, without loss of generality, we
adopt the models of two popular robotic systems to the virtual
environment. One is the da Vinci research kit (dVRK) [51] (with
its simulation model further referring to [52]) developed from
the dVSS (Intuitive Surgical Inc.), which is currently a paradigm
surgical robotic system worldwide. The other is the UR5 by
the Universal Robots, which has the typical kinematic design
of 6-DoF serial revolute joints. The feature point for providing
visual feedback is fixated at an arbitrary (distal) position attached
to the robot end-effector, such that it could be actuated by all
robot joints. The feature point, subject to the robot’s initial
configuration, should be observable by a monocular camera with
known intrinsic parameter matrix K ∈ R3×4 as an eye-to-hand
set-up. The resolution of the camera is set to 640× 480 pixels.
We again emphasize that the 3-D position of the feature point
tm does not need to be known in all set-ups. The feature is a
red sphere (see Fig. 4 for illustration) with diameter of 1 mm,
which is detected by computing the centroid of the region on the
image subject to color-based segmentation. This implies that
despite simulation, there exists a theoretical sensing error in the
robot–camera model, as the 2-D centroid is not necessarily the
exact projection of the center of the 3-D sphere. The detailed
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Fig. 4. Two simulation set-up scenes using two typical types of robot manip-
ulators and the cameras (in gray boxes). The red points in the magnified view
are the observed world feature point fixed on the end-effectors, respectively.
(a) Simulation set-up with dVRK. (b) Simulation set-up with UR-5.

TABLE I
PARAMETER SET-UPS OF THE SIMULATION SCENE FOR ROBOT–CAMERA

CALIBRATION USING DVRK AND UR5, RESPECTIVELY (THE UNIT FOR

TRANSLATIONAL COMPONENTS ARE ALL MM

set-up parameters for the robots could be referred to Table I,
which are trivial with nonparticular as the general situations,
but is reasonable for application scenarios.

The VFL could be arbitrary selected in 3-D space as long
as reachable by the robot’s motion space. Throughout the sim-
ulation and experiments, for simplicity, we set the VFL to be
parallel to the x-axis of the robot end-effector to avoid trivial
intermediate transformation calculus. Then, we could adopt the
following trajectory:

rζ =
[
cos(s(t)) sin(s(t)) 0

]ᵀ
(33)

whose dynamics is further parameterized by the corresponding
s(t) with respect to r0 as

s = π
1− cosωt

2
. (34)

The leading geometry of the path ζ by (33) is, thus, a half-circle
curve, which is obviously continuous and convex that satisfies
the properties defined in Section IV-A. Meanwhile, s(t) ∈ [0, 1]
in (34) also allows periodical motion of the robot end-effector
along the path to generate IP movements.

We first validate how different amount of data (by tuning nR
andnt) will affect the calibration accuracy under an identical set-
up. The combined approach, or the R− t−T pipeline is used
at this stage. We assume the available motion space for the robot
end-effector is a sphere with radius of only 10 mm (i.e., φ = 10
mm), which is significantly smaller than the available motion
space of the robot itself. Then, by deploying the abovementioned
parameter set-up, we assign a random and different w0 for each
IFP convergence step and complete 50 individual robot–camera
calibration process. An average L2-norm rotation/translation
calibration error (rotation error computed using Euler angles)
is then computed. Fig. 5 demonstrates the performance of the
single-point robot–camera calibration accuracy under restricted
robot motion space of 10 mm but with different number of data
nR and nt. It is easy to discover that, generally, increasing the
number of either data not only decreases the average calibration
errors but also reduce the result uncertainties (inspected by
the span of error bars). Particularly, by selecting nR ≥ 8 and
nt ≥ 8, the average accuracy of both rotational and translational
components have further decreased, i.e., < 0.3◦ in rotation and
< 0.7 mm in translation regardless of the robot being tested.
When nt is set to 20 in the UR5 case, the calibration error
decreases to ∼ 0.09◦ for 3-D rotation and ∼ 0.11 mm for 3-D
translation evennR is only set to 20. Note that the centroid-based
2-D feature detection introduces theoretical sensing error, which
is commonly encounter in realistic application. Meanwhile, it
is notable that, the calibration accuracy is weakly reflected by
the corresponding reprojection error of the feature point on the
image, especially when nR and nt are smaller than 8. The basic
average error for different number of data around 0.11 px for the
dVRK case and 0.07 px for the UR5 case.

We then conduct comparative analysis of our approach to
study the calibration accuracy under different properties. The
number of collected data is now set to nt = 20 with varying nR.
Again, we do 50 trials for each identical set-up. First, we vary
φ among 5 mm and 20 mm to investigate the influence of the
restricted motion space on the calibration accuracy. Fig. 6 shows
the calibration result relationship among different φ and nR. We
can see that larger motion space tends to result in lower accuracy
under the identical nR, which is reasonable as it performs more
informative spatial data input for calibration. AsW0 and the data
for estimating t are both randomly selected, the curves slightly
fluctuate but still show clear trends. For φ ≥ 10mm, the average
rotation error tends to be around 0.07◦ with nR being greater
than 10.

Next, we fix the value of φ and apply different sensing noises
of the feature point on the image. Such investigation is necessary
as image-based measurements inevitably include noises, which
might affect the feedback quality, especially for a single point
feature available in our case. We generate a random noise on
the observed position of the 2-D feature point from the image
with its distribution with respect to 0 being U(−β, β), which is
a uniform distribution. Fig. 7 shows the results of the calibration
accuracy under noises with different magnitudes. The larger the
noise magnitude is set, the larger the rotation and translation
error exhibits. However, under each case, the accuracy appears
to be reliable across different values of nR being selected. The
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Fig. 5. Demonstration of robot–camera calibration performance under different amount of data using nR and nt. The data in the first/second row indicate the
validation using the virtual dVRK/UR5 as the robot, respectively. In each row, the average of the norm of rotation error, translation error, and feature back-projection
error is shown in the left, middle, and right subfigure, respectively.

Fig. 6. Performance analysis of setting different motion space restrictions via
φ and the corresponding calibration errors (left: rotation error, right: translation
error) on dVRK. For each set-up, we did five trials and compute the average
errors.

Fig. 7. Performance analysis of setting different magnitudes of random noises
and the corresponding calibration errors (left: rotation error, right: translation
error) on dVRK. For each set-up, we did five trials and compute the average
errors.

most stable behavior of the residual error occurs at the case with
no noise. This indicates that the noises impose explicit affect
on the calibration accuracy, and the fluctuation is also positively
correlated as well.

Now, we further conduct comparative analysis to show the
calibration performance using different parameter estimation
pipelines. As stated, we could recover the robot–camera trans-
formation using R− t approach the R−T approach. We first
apply the same motion space restrictions and then record the
calibration results via different nR. Fig. 8 shows the results of
the calibration errors using box charts. Generally, larger motion
space leads to better calibration accuracy for both pipelines,
which is consistent to the previous results. However, the R−T
approach outperforms the R− t approach in terms of both the
rotation and translation errors, and own smaller uncertainties
under different nR. While using the R− t approach, as the
rotation error directly propagates to the translation component
estimation phase, increasing the number of IFP data leads to a
larger and fluctuated estimation errors. The R− t pipeline oth-
erwise provides much more accurate and consistent performance
in eliminating residual feedback errors.

Then, we apply random noises generated toward image fea-
tures with different magnitudes, with the results being shown in
Fig. 9. The performance is similar to that of changing φ, where
the combined approach exhibits smaller and more consistent
calibration errors compared to the separated pipeline. However,
the increasing magnitude of the noise might also render the
R−T pipeline fluctuate more, but still performs better than
the R− t pipeline. This proves our calibration method, despite
use of a single feature point, an average 0.45◦ rotation error
and 1.51 mm translation error could be reached upon the image
sensing noise of ±1 pixel, with good consistency as well.

VII. EXPERIMENT RESULTS

A. Overview

We tested our robot–camera calibration algorithm using the
dVRK because robotic surgery is typically performed in a
tightly-constrained environment that lacks consistent visual fea-
tures. We will first show the basic performance of our algorithm
that could stably acquire visual data by individual IP-based
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Fig. 8. Comparison of calibration accuracy on dRVK under different motion space restrictionsφ (first/second row: position/orientation error. SEP and SEP+COMB
indicates calibration results using R− t and R−T pipeline, respectively.

Fig. 9. Comparison of calibration accuracy on dVRK under different magnitudes of uniformly distributed random noises (first/second row: position/orientation
error). SEP and SEP+COMB indicates calibration results using R− t and R−T pipeline, respectively.

control progresses subject to restricted motion space. Then,
we conduct comparative analysis with existing popular meth-
ods, and also with our approach under different computation
pipelines. The metrics used for performance evaluation include
back-projection of robot end-effector on 2-D image upon col-
lected kinematics data, and also 3-D measurement of robot tip
positioning accuracy over prescribed measurable world posi-
tions.

B. Set-Up

The dVRK is formed by a set of 6-DoF active serial joints for
actuating a robotic surgical instrument, with an additional DoF
to control the jaw opening angle of the distal tool. Throughout
our experiments, we use the large needle driver as the mounted
instrument type and keeps the jaw angle of the driver to 0, such
that it is equivalent to a 6-DoF general robot arm. To recall
the surgical set-up, the distal tip is usually extended from the
RCM point for around 100 mm [53] as a common distance to

reach the (surgical) operation space. Due to the tendon-driven
design of the instrument, the end-effector positioning accuracy
might be intrinsically lower than that of the industrial robot
arm [54]. However, we clarify that all the model errors will
not be compensated in advance, which are to be reflected by the
visual features and will be collected by our algorithms. Both
the integrated laparoscopic camera and an industrial camera
will be used as our imaging sensors in different set-ups. The
resolution for both the industrial camera and the laparoscopic
camera are set to 640 × 480 pixels. Fig. 10 shows the layout of
our robot–camera set-up.

We only use one single world feature point as visual feedback
during the experiment. It is manually selected by the user using
mouse clicking on the screen as an initialization step. This
feature, now described in 2-D pixel (asy), is to be tracked during
the data collection step using an optical flow algorithm, which
is a mature image tracking method. We again emphasize that,
the 3-D information of the feature point remains unknown (as
we are using sole monocular images), which is also not required
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Fig. 10. Experimental set-up using dVRK as the robot platform.

throughout the calibration procedure. However, note that the
3-D position of the feature point will finally be automatically
identified together with the robot–camera transformation matrix
T after the calibration is completed.

We use a PC with Core i7 3.4 GHz desktop CPU and 128 GB
RAM as the upper level controller. The computer connects to
the robot controller via TCP/TP, and the software communica-
tion is completed by the cisst/SAW libraries and dVRK ROS
MATLAB, which is run on MATLAB R2020b (MathWorks).
Note that we do not deploy any acceleration schemes (either
parallel computation or GPU array) as our algorithm is not com-
putationally expensive. The camera is precalibrated with known
distortion parameters and captures online streaming videos at
∼30 fps, while the lens distortion has been rectified to improve
the sensing accuracy.

C. Data Acquisition Performance

We first evaluate the performance for our IP-based data
acquisition scheme and its leading robot–camera calibration
performance upon typical set-up. We assign the motion space re-
striction of the robot end-effector asφ = 10mm, which indicates
a 10 mm radius sphere. This is a significantly restricted scenario
compared to that required by existing calibration approaches
where calibration object itself is already at such scale [55].
We assign nR = 5 and nt = 20, as from the simulation part,
such amount of data is reasonable to achieve both efficient data
acquisition process and decent calibration results under model
uncertainty. After convergence during each process, the robot
additionally applies a rotation matrix in euler form as [0 0 op]

ᵀ

from the last w0 to deviate the 3-D position of m upon s = ss
and st to avoid generating repetitive data input. op is further
computed as op = π/nR to maximize the visual differences
subject to restricted φ. The assignment of other parameters are
shown in Table II. When collecting the nt number of data for
computing t, we assign the end-effector position to uniformly
and randomly distributed in the sphere to maximize the use of
the motion space. The initial state of the robot end-effector r0
and w0 again yields a typical set-up in robot-assisted surgery.
The robot–camera relationship allows the camera to observe the

TABLE II
PARAMETER SET-UPS FOR DATA ACQUISITION IN EXPERIMENTS

Fig. 11. Evolution of robot joint positions q, IFP orientation ψ, the image-
based feature-to-reference distance d upon IP-based IFP regulation with nR =
5, φ = 10 mm, which indicates five individual convergent processes (Shaded
areas represents first, third, and fifth convergent process).

robot’s distal tip around the center of the image, such that it tends
to stays within the field of view of the camera.

Fig. 11 illustrates the robot motions subject to IP during data
acquisition for B and C. The robot has completed totally five
independent control processes with different np, which are sep-
arated with shaded and unshaded areas along time steps. Under
a 30 Hz overall control loop frequency, in each control process,
the image-based point-to-line error d in (10) is stably minimized
to 0 subject to the IP-induced motion. After convergence of d,
the robot end-effector motion continues due to the periodical
movement of the feature point along ζ upon dynamics of s.
Meanwhile,ψ is also stably converged each time upon regulation
of d, and is smoothly changed throughout the evolution, as for
simplicity, we directly use the last settled ψ to initialize the next
control phase. Once the variation of ψ is small enough (judged
by a preset threshold), 1e and 2e are computed and stored, and
then a new control process starts along with a newly set op. Note
that, the stable convergence of d is guaranteed by the definition
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Fig. 12. Recorded robot end-effector motions during data acquisition under
different software set-ups. Red lines: robot end-effector trajectories; green
points: data samples for estimating t. (a)φ = 5mm for motion space restriction,
nR = 2 andnt = 10 for the number of data samples. (b)φ = 15mm for motion
space restriction, nR = 10 and nt = 20 for the number of data samples.

of a convex trajectory used for IP-based motions, as this rejects
the 2-D position ofy on the image to go across lr under a fixedψ.
This is important to allow that the image-based regulation of ψ
for minimizing d owns a stable equilibrium point. The evolution
of d shows small fluctuations, which are attributed to sensing
noise on the image while tracking m but stably converges and
indicates good robustness of our controller. The time cost to
reach convergence in each process is different, which is affected
by the differences of initial d.

We also show the robot end-effector’s motions under SE(3)
space throughout the data acquisition process in Fig. 12. The two
cases show that regardless of the number of data assigned by nR
and nt, the envelopes of the trajectory stay within the motion
space exactly defined by φ without applying additional con-
straints. In detail, the data acquisition phase of rotation (through
the red trajectories in Fig. 12) are continuous and occupies the
semisphere of the target workspace, while the discrete target
positions for estimating the overall robot–camera transformation
and randomly selected within the sphere.

D. Comparative Evaluation

We then evaluate the calibration accuracy and conduct com-
parative analysis with different approaches and our method with
different pipelines. As we only use a single feature point as the
sole visual feature, typical validation approaches, and datasets
relying on calibration objects and/or landmarks for accuracy
evaluation becomes not applicable for our evaluation. Mean-
while, the inaccurate robot kinematics model due to tendon-
driven actuation makes the measurement of the ground truth
unreliable if using external sensors [55]. Thus, for accuracy val-
idation, we aim to measure the 3-D positioning accuracy of the
end-effector, affected by both Rc and tc, by comparing the error
with predefined measurable ones. We construct a calibration
plate with a grid to be reached by the end-effector as shown in
Fig. 13 . The plate is further mounted on an XYZ microtrimming
platform with two functions: 1) to adjust the plate vertically to
let sample points cover a volume instead of a planar surface to
generate more error data, and 2) to allow precise measurement of
the position error between the end-effector and the target corner

Fig. 13. End-effector measurement set-up (left) using a checkerboard mounted
on an XYZ microtrimming platform (bottom right) to generate measurable world
position reference points using corner pixels within the volume enclosed by the
red dash lines (bottom right), which are to be reached by the robotic end-effector
tip.

pixel. The plate grid is of 12 × 9 with 5 mm for each square. As
the movable range of the platform along z-axis is 30 mm, one can
generate overall 352 calibration reference points (using world
corner pixels) within a volume of 55 × 40 × 20 mm if we use
20 mm with 5 mm interval for z-axis tuning. Their 3-D positions
are all measurable from the camera. After the end-effector is
directed to that position using calibratedTc, its positioning error
to the reference position is measured by manually trimming
the plate position to eliminate the residual distance between
the end-effector and the corresponding corner pixel. To meet
practicality, we assign nR = 5, nt = 20, and φ = 10 mm as the
software set-up.

We validate the calibration accuracy from two aspects: the
3-D positioning error of the end-effector, and the 2-D back-
projection error of the distal tool point on the image. We compare
the result with that of one of the most commonly used robot–
camera calibration approaches, i.e., the Tsai’s method [15]. To
do so, we additionally use an 8× 5 checkerboard grid with 4-mm
square size mounted on the instrument and capture 20 images
for calibration. We totally compare the following four methods:

1) the standard Tsai’s method using the checkerboard using
20 images;

2) the standard Tsai’s method as initialization, followed by
nonlinear optimization using back-projection error from
data acquisition via random positioning, as optimization-
based estimation is commonly used in markerless situa-
tions;

3) our method with R− t pipeline;
4) our method with R−T.
Fig. 14 visualizes the envelope of the tight motion space

(φ = 10 mm) complied by the robot end-effector during data
acquisition in different cases. The back-projected sample points
for refining Tc are also visualized. Fig. 15 shows the measured
3-D positioning errors of the end-effector using the microtrim-
ming platform. The error using R−T pipeline is generally
smaller than that of R− t and Tsai’s−T. The results from
R− t spread wider especially along z-axis of the grid. Fig. 16
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Fig. 14. Back-projection of the random sample points (red points) in all four set-up cases using our calibration method (s.t. nt = 20) and the collected 2-D image
feedback (blue points), the yellow circles show the projected restricted motion spaces during data acquisition phase on the image, which are all a 10-mm-radius
sphere (s.t. φ = 10 mm) in our setting.

Fig. 15. Superpositioned measured positioning errors of the end-effector
tip with respect to the corresponding reference points using three methods,
visualized with respective to the checkerboard frame toward X–Y and X–Z
plane, respectively.

Fig. 16. 3-D error on image.

further shows the norm of the 3-D errors using four different
pipelines. The results using the standard Tsai’s method in all four
cases have the largest back-projection errors and poor consis-
tency, which is likely to be caused by the enlarged robot kinemat-
ics error led by the mounting calibration grid, or the small motion
space restricted by the camera’s field of view (∼40◦). However,
by applying an additional data acquisition and optimization step
using the standard Tsai’s method as an initial guess, the errors
are significantly reduced from around 6.9± 3.3 mm down to
2.2± 1.3 mm from four cases. Meanwhile, our method using
R− t pipeline performs better than Tsai’s method, and R−T
outperforms R− t in both the accuracy and consistency. This

Fig. 17. 2-D error on image.

is because the optimization of Tc avoids the rotation error to
be propagated to the end-effector position. The results show
that the R−T pipeline of our method using a single feature
point is competitive to the Tsai’s + T method using calibration
objects with more accurate and stable robot positioning. The
average 3-D positioning error upon calibration using R−T
pipeline across four cases is 1.8± 1.0 mm, compared to the
2.9± 1.9 mm by R− t pipeline, and 2.3± 1.2 for the Tsai’s
+ T method. Fig. 17 shows the back-projection results using
the four method applied to four different set-up cases using the
reference positions. The performance comparison is similar to
that of the 3-D positioning errors. Our R−T pipeline per-
forms best in all four pipelines with an average 6.5± 7.8 px
back-projection errors, while the result of R− t pipeline is
13.8± 15.8 px. Note important that, the result fromR−T does
not rely on any initialization of T. Fig. 18 finally demonstrates
the visualized back-projection results of the robot skeleton using
the robot–camera calibration results using our method.

We also compare the computation performance using the
abovementioned methods by evaluating their abilities to provide
converged results to reference robot–camera transformation. By
maintaining the previous system set-up and the amount of data
collection, we do 50 trials for each case and set the outlier
threshold as the L2-norm rotation or translation error relative to
the reference Tc to be greater than 100 mm/1 rad, respectively.
As ground truth is not available, the reference Tc is computed
by averaging the inliers. We then calculate the percentage of the
outliers as the convergence rate, where the results are shown
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Fig. 18. Illustration of the robot skeleton back-projection results overlaid on the raw sensing camera images with random configurations. The four rows of figures
indicate the four different set-up cases. The first column shows the selected feature point (by green circles) in each case. The red lines and red dots show the
back-projected robot links and skeleton nodes, respectively.

Fig. 19. Convergence percentage of different approaches while commencing
50 individual trials upon nR = 5, nt = 20, and φ = 10 mm. For direct esti-
mation of T, we randomly initialize it as the lack of any knowledge.

in Fig. 19. Our method using R− t and R−T pipeline own
convergence rate of 47/50 and 46/50, respectively, which is as
good as the Tsai’s method being 48/50. Adding estimation step
of T to Tsai’s method does not affect the rate, while slightly
decreasing to that using IP-based estimation. The convergence
rate of our algorithm using a single feature point is similar to the
Tsai’s method. The possible explanation for them not reaching
100% could be the optimization process under random pose se-
lection might occasionally be degenerated in the observable data
space. We additionally apply optimization-based estimation of
Tc from back-projection feature errors with blind initialization
of [1 0 0]ᵀ for all Rc, tc, and tm, respectively. The estimation
result shows 3/50 convergence rate, far worse than that by
the others, owing to the unpredictable local minima appeared
during iterations from poor initialization. It implies that our
method owns good performance while avoiding local minima
using the IP-based data collection scheme under limited number
of data.

We additionally compute the time cost for different phases to
show the consistency in efficiency. We fix the original set-up and

Fig. 20. Steps and time cost for: collecting one pair of 1e and 2e for estimating
Rc (left), collecting the data matrix B and C (middle), and the optimization
process for refining Tc.

apply different initial orientation of the IFP with a random but
nonzero initial ψ. Fig. 20 demonstrates the consumed steps and
equivalent time cost to finish the data collection and computation
process. The mean value for a control process for collecting a
pair of 1e and 2e is 213± 125 steps and 7.1± 5.4 s. As nR = 5,
the overall IP-based control processes is 1260± 597 steps and
35.8± 9.2 s, respectively. This indicates around 7 s required to
converge one pair of vectors. The reason for the inconsistency
across individual process is mainly due to the different con-
vergent paths of ψ from different (randomly) initialized values.
Note that the computation of R after acquiring the data matrix
B and C using SVD is analytical whose computation time is
negligible. The corresponding control frequency is∼29Hz. The
average durations for computing the final Tc is 87± 82 ms.
We again emphasize that the above time cost are computed
without software acceleration, whose actual consuming time
could be improved, but is considered negligible compared to
the IP control phase.
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VIII. DISCUSSIONS

A. Result Performance

We have quantitatively demonstrated the calibration perfor-
mance of our method and compared it with two typical types
of approaches: the standard approach that relies on calibration
object as the Tsai’s method, and the offline–online combined
pipeline as Tsai’s+T method. First, it is important to note
that, our algorithm is executable within a 10-mm-spherical end-
effector motion space, which shows distinct potential to adapt
to tightly constrained environment. No studies have explicitly
tackled such constraint for robot–camera calibration. However,
it has been shown that our method outperforms both these two
types with lower 3-D positioning errors and 2-D back-projection
errors. It is also better than existing state-of-the-art approaches
evaluated on the identical dVRK platform (e.g., 20 mm in [40],
>10 mm in [39], 2.0 mm in [41], and 3.2 mm using our
previous work using line features [12]). These approaches use
the estimation error of tc, which should have indicated smaller
errors compared to our metric (i.e., the 1.8 mm end-effector posi-
tioning error), as it introduces additional error propagated byRc.
Our SVD-based solver leads to competitive convergence rate
(reduced possibility to reach local minima) as the Tsai’s method
(i.e., 96%) despite no initialization. This generally shows that our
method not only systematically reduces the constraints required
but improving calibration results from different aspects as well,
with good consistency under sensing noises and modeling error,
even though the single-point feedback input is generally more
vulnerable to disturbances.

Currently, there are no existing datasets established for robot–
camera calibration applicable to be deployed by our method. An
important reason is that, our method is based on interactive robot
control which requires immediate response of robot motions
but could deal with unstructured visual patterns, which rejects
all datasets which only store offline and static images with
well-known visual patterns. However, the settings and results
presented could be used as a baseline to be compared to by
other future research works.

B. Practicability

First, our robot–camera calibration approach allows very sim-
ple set-up. It only requires stable observation of a single feature
point with unknown position, which is theoretically the most
relaxed assumption for image feedback and is easy to generate
(even a natural stain suffices as in our experiments). No initializa-
tion step is required as well, compared to the recent works in [38],
[56], and [10] that uses a Perspective-n-Point (PnP) solver to
compute an initial guess. Second, our method does not require
tedious data acquisition process. The abovementioned result in
Figs. 16 and 17 is achieved by assigning nR = 5 and nt = 20,
where a total time of 1 min (at 30 fps) suffices the acquisition
and computing process, which is faster than many existing works
(e.g., 40 mins in [41]). No large-scale data collection is required
as well, compared to the 256 groups of data required for [39]
targeting similar assumptions. Moreover, the motion space of
the end-effector during data acquisition could be rigorously

restricted using out IP-based control scheme with no calibration
objects. Although we set the camera-feature distance in our
experiment as ∼100 mm, the capability of our algorithm using
a single feature point does not impose any theoretical limit of
such distance, as long as the feature could be focused by the
camera for stable image-based tracking.

The calibration process is autonomous and the available mo-
tion space could be manually defined by users viaφ, which shows
great intrinsic potential for application in complex working
environment, comparing to the approaches requiring calibration
objects. We currently do not address the robot motions reaching
limits and/or singularities. However, as the motion only covers a
very small volume proportion (∼ 3% of the dVRK’s workspace)
and the fact that the reference p0 is manually selected, this
naturally avoids the possibility to meet so.

C. Generality

Besides the eye-to-hand set-up as demonstrated in this work,
our method is easily extendable to solving eye-in-hand calibra-
tion and robot-to-robot calibration. Foe the eye-in-hand case,
one could directly apply the end-effector motion depicted by (5)
to the robot that carries the camera. The feature point could be
selected as a static point in the world. The IP-based control
scheme again aims to settle the image error (10) from the
precomputed lr, until B and C are solved. The rest of the
computation remains identical to the current eye-to-hand model
but only with tm representing the feature’s position with respect
to the robot base frame instead of the end-effector frame.

For the robot-to-robot calibration, we still only require one
feature point for each end-effector to generate image feedback.
To constructnr, one could directly connect the two feature points
observable in the image upon the robots’ initial configuration to
form nr. Then, assuming robot I and robot II, each robot is in-
dependently controlled to collect respective B1, C1 and B2, C2

using the same pipeline as in this article. The rotation between
robot I and robot II could then be solved as in Section V-B by
eliminating the camera term.

IX. CONCLUSION

In this article, we have proposed a new approach to solve
robot–camera calibration under tightly constrained environ-
ment. The approach considered a single (position-unknown)
feature point in a user-defined restricted motion space for data
acquisition. We then leveraged the concept of IP to enlarge
the acquirable feedback data, and proposed the IFP, which is
adjusted via a novel IP-based control scheme to acquire spatial
relationship between the robot and the camera. Simulations have
shown the capability of our algorithm to calibrate the robot–
camera relationship on different types of robot accurately and
robustly. In experiments, the results demonstrated the superiority
of our algorithm compared to existing methods on the 3-D
end-effector positioning error and 2-D back-projection error.
Computation consistency is not significantly affected compared
to approaches using calibration objects. Our method does not
require calibration objects nor large-scale data acquisition, and
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could be extended to solving robot–camera and robot–robot
calibration.

Aiming for future work, we plan to further enhance the perfor-
mance of our algorithm across more complex applications. At
current stage, we take all the model errors and/or measurement
noises into the estimation phase. This could provide robust
results under a considerable scale of data, but is hard to further
improve the calibration accuracy, which is one limitation in this
work. As different sources of errors affect the results differently,
using data-driven algorithms to “learn” the error distribution
(e.g., robot joint errors) might facilitate better accuracy under
tight environment. It is also promising to apply such method on
continuum robots and soft robots in the future whose kinematics
error is not negligible, and to online update the calibration
results if on-the-fly recalibration is required in complex robotic
applications.

APPENDIX A
PROOF OF THEOREM 2

We first combine (4), (5), and (22) to obtain the following:

06×1 =

[
Rq0

∂v

∂Ψ
(Ψ(t))

03×6

]

+ J(·)J−1(·)Γ
[
r(q(t))− xq0

− φRq0
v(Ψ(t))

03×6

]

+ φJ(·)J−1(·)
[
Rq0

∂v

∂Ψ
(Ψ(t))Ψ̇(t)

03×6

]

06×1 =

[
ṙ(q(t)) + φRq0

∂v

∂Ψ
(Ψ(t))Ψ̇(t)

03×6 + 03×6

]

+ Γ

[
r(t)+Rq0

tm−xq0
−φRq0

v(Ψ(t))−Rq0
tm

w0 −w0

]
.

(35)
As one can compute the robot-actuated position of the feature
point as m(q(t)) = r(t) +Rq0

tm, incorporating (7) could,
thus, lead the first three rows to the following dynamics:

ṁζ(·) = ṁ(q(t)) + Γ(m(q(t))−mζ(·)). (36)

To evaluate the performance of (36), we define the following
Lyapnuov function as

V =
1

2
(m(q(t))−mζ(·))ᵀ(m(q(t))−mζ(·)) (37)

then, the derivative of (37) by considering (36) could be derived
into the following form:

V̇ = (m(q(t))−mζ(·))ᵀ(ṁ(q(t))− ṁζ(·))
= (m(q(t))−mζ(·))ᵀ(ṁ(q(t))− ṁ(q(t))

− Γ(m(q(t))−mζ(·))
= −(m(q(t))−mζ(·))ᵀΓ(m(q(t))−mζ(·)) (38)

which indicates a negative semi-definite function. Meanwhile, as
m(q(t)) andmζ(·) are robot-actuating states and to be smoothly

planned during each IP control process (subject to s), they are
obviously bounded which leads V̇ to be uniformly continuous.
Thus, the evolution of m(q(t))−mζ(·) is asymptotically min-
imized to 0 based on the Barbalat’s Lemma [47]. The following
statement:

lim
t→∞ ||r(t) +Rq0

tm

− (xq0
+ φRq0

v(Ψ(t)) +Rq0
tm)︸ ︷︷ ︸

mζ,q0
(Ψ(t))

|| = 0 (39)

is then satisfied.
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