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Abstract
Agile maneuvers are essential for robot-enabled complex tasks such as surgical procedures. Prior explorations on surgery
autonomy are limited to feasibility study of completing a single task without systematically addressing generic manip-
ulation safety across different tasks. We present an integrated planning and control framework for 6-DoF robotic in-
struments for pipeline automation of surgical tasks. We leverage the geometry of a robotic instrument and propose the
nodal state space to represent the robot state in SE(3) space. Each elementary robot motion could be encoded by regulation
of the state parameters via a dynamical system. This theoretically ensures that every in-process trajectory is globally
feasible and stably reached to an admissible target, and the controller is of closed-form without computing 6-DoF inverse
kinematics. Then, to plan the motion steps reliably, we propose an interactive (instant) goal state of the robot that
transforms manipulation planning through desired path constraints into a goal-varying manipulation (GVM) problem. We
detail how GVM could adaptively and smoothly plan the procedure (could proceed or rewind the process as needed) based
on on-the-fly situations under dynamic or disturbed environment. Finally, we extend the above policy to characterize
complete pipelines of various surgical tasks. Simulations show that our framework could smoothly solve twisted maneuvers
while avoiding collisions. Physical experiments using the da Vinci Research Kit validates the capability of automating
individual tasks including tissue debridement, dissection, and wound suturing. The results confirm good task-level
consistency and reliability compared to state-of-the-art automation algorithms.
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1. Introduction

Assisting multi-step dexterous manipulation tasks like
minimally invasive surgical procedures is one of the pri-
mary directions in robotic applications. The well-identified
advantages of augmented precision and stabilization,
compared to manual handling, inherently offer advance-
ment for positioning of surgical instruments. However, the
up-to-date paradigm of robot-assisted minimally invasive
surgery (RAMIS) still requires the surgeon to fully teleo-
perate the instruments throughout the surgery, or could only
automate a single positioning step in ex-vivo environment
(Kwoh et al., 1988). The surgeon’s mental concentration
remains greatly demanded during the surgery, where the
inconsistency in skill proficiency appears among novices
and experts. Once they are automatically planned and ex-
ecuted under surgeon’s supervision, the human workload
could then be effectively liberated and benefits task
effectiveness.

The main goal of surgical task operation is to perform
instrument motions and target contact safely according to
task guidelines. Many surgical tasks in MIS (e.g., tissue

dissection and suturing) comprise sequences of highly in-
teractive motion sub-steps towards different targets. To cater
for the minimally invasive setup, the instruments usually
own a long, slender tool shaft with a wrist-like distal
structure to enhance motion dexterity. However, task mo-
tions commonly encounter highly twisted motions (e.g.,
consecutive contacts to tissue/needle with inverted orien-
tation). One or more states in SO(3) space might experience
large-scale variation(s) ð∼ 180°Þ within a small R3 space.
The instruments should also avoid inadvertent intrusion to
surrounding tissues and other instruments. In RAMIS, these
are done by the surgeon using a control interface that
transfers his/her delicate hand motions to robot actions. To
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ensure safe interaction to the target (e.g., a firm grasp of a
tissue/needle via a specific contact pose), the surgeon also
stays aware of the robot trajectory and will only proceed
once the tool-target alignment becomes suitable. Auto-
mating a surgical task with a sequence of such motions
demands a smooth and reactive planning control policy to
pave the way to reliable task execution.

The challenges are then to define and ensure motion
safety throughout the pipelines across different tasks. The
primary concern is that there must be theoretical proof to
support that the robot trajectory is feasible and also
reachable to admissible target states. Each motion should
also own re-planning strategy upon specific motion con-
straints to ensure proper contact to a (moving) target during
multi-arm coordination. Other features including avoidance
of obstacle collision and joint limits, real-time im-
plementation, etc. should be solved as well. More impor-
tantly, the above features should be applicable to every
elementary task motion throughout the pipeline of surgical
tasks to avoid execution-level uncertainties. Planning tra-
jectories for robot manipulators has been widely studied in
industrial and/or domestic applications. Prevailing methods
include generation of roadmaps (Siméon et al., 2004; Amato
and Wu, 1996) and sampling-based methods (Berenson
et al., 2009; Berenson et al., 2009) to directly explore the
6-DoF feasible trajectories. Meanwhile, on-the-fly
planning/control schemes could be more efficient and re-
active, for example, the potential field (Hwang and Ahuja,
1992) to attract/repel workspace constraints, but is subject
to local minima that hinders target reachability. Aiming for
surgery autonomy, most works adopt the above approaches
to execute specified motions (Marinho et al., 2019) and/or a
certain task (Sen et al., 2016) in surgery. Learning from
demonstration is also utilized to deal with complex ma-
neuvers like knot tying (Osa et al., 2017) and suturing
(Schulman et al., 2013) to avoid direct path planning. We
are unaware of any existing works that define generic safety
motion constraints emerged from surgical tasks and apply
them using a unified framework.

In this article, we present an integrated planning and
control framework for 6-DoF robotic instruments for sur-
gical task automation. The framework covers a globally
stable manipulation controller, a reactive manipulation
planning policy, and a generic motion primitive to char-
acterize different surgical tasks. We first classify task-
relevant surgical motions into two typical types. The first
type is called tool-centric actions, where the robot end-
effector is manipulated between (feasible) initial and final
configurations without tentative contact to the target but
might avoid obstacles. The second type is the target-centric
actions, where the end-effector is delicately guided upon
certain motion constraints to zero the remaining distance to
the target for final contact. By leveraging the kinematic
property of the instrument’s wrist geometry, the nodal
vectors could directly parametrize the robot’s present-to-
goal situation by a new set of parameter space, namely, the
nodal state space (NSS). This avoids generating the

(coupled) 6-DoF poses as a high-dimensional nonconvex
manifold analysis that hinders globally stable manipulation.
The robot trajectory is then generated and executed upon
regulation of the states in NSS encoded by a dynamical
system. The leading robot motion could be rigorously
guaranteed stable and smooth under Lyapunov stability
theory, and is further globally viable once the state regu-
lation is coordinated by sequential motion allocation
(SMA). We verify its capability to smoothly operate twisted
maneuvers, which include drastic orientation changes in-
evitably occurred in surgical motions. Moreover, elemen-
tary motions within the task should be coordinated with
situation awareness. To this end, we introduce a dynamic
attraction state (DAS), whose dynamics is designed by NSS,
as a “tunable” instant goal for active guidance of the robot’s
movements. This transforms motion autonomy into a goal-
varying manipulation (GVM) problem, which we could
further detail the robot’s in-process trajectory through extra
motion constraints for path versatility. We apply GVM as a
reactive planning policy to ensure target-centric actions
(e.g., repetitive needle grasping in suturing). By defining a
bounded and robust DAS, GVM could adaptively proceed
or rewind the contact motion based on on-the-fly situations.
This could avoid hazardous movements while yielding a
constrained path (e.g., unnecessary space intrusion or
premature target collision). The framework provides a
close-form motion output for tackling online motion con-
straints with guaranteed trajectory feasibility and target
reachability. Such features are available for each elementary
motion without using iterations. Finally, to elevate task-
level generality, we extend such scheme to form different
modes of behavior (MoBs), which facilitates depicting and
automating pipelines of different tasks.

The main contributions of this work are summarized as
follows:

· A robot state model with skeleton nodes and the NSS for
direct formulation of the present-to-goal situation for a
robotic instrument based on its kinematic constraints.

· A DS-based robot controller with synthesized SMA
which provides global asymptotic stability proof that
guarantees in-process trajectory feasibility and target
reachability to an arbitrary (admissible) target.

· The GVM reactive planning policy to facilitate bilateral
transition between target contact and path following to
smoothly deal with disturbed targets.

· The motion primitive and its five MoBs which could
define pipelines of different surgical tasks.

· Simulations and physical experiments on different tasks
are conducted for comprehensive validation.

Our previous works have addressed a few individual
problems that target surgery autonomy. We have proposed
an efficient and autonomous robot-camera calibration ap-
proach to compute the robotic instrument’s pose from a
monocular camera for vision-guided instrument manipu-
lation (Zhong et al., 2020). Aiming for autonomous
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suturing, a monocular-based 6-degree-of-freedom (6-DoF)
pose estimation algorithm of a surgical needle has been
developed (Zhong et al., 2016; Zhong & Liu, 2018), which
was later implemented to a dual-arm needle insertion
control scheme to increase needle insertion accuracy under
deformation (Zhong et al., 2019).

The structure of this article is summarized as follows.
Section 2 reviews the related works from manipulation
planning and control approaches to surgery-specific ex-
plorations. Section 3 shows the problem formulation for this
work. Section 4 introduces the new robot kinematics model
for the robotic instrument using nodal state space. Section 5
elaborates the motion-level planning and control strategy
and guaranty of safety and in-process constraints. In Section 6,
we elevate the strategy to task-oriented modelling by
characterizing different MoBs to form pipelines of different
surgical tasks. Section 7 demonstrates the simulation results
concentrating on motion-level performance study, and the
experimental results in Section 8 show the overall task-level
performance. Finally, discussions and conclusions are
presented in Section 9.

2. Related works

Manipulation planning and control of 6-DoF manipulators
subject to in-process constraints has been widely exploited
in industrial and domestic applications. Most works target
general workspace constraints, mainly for obstacle avoid-
ance (Siméon et al., 2004; Stilman et al., 2007) and/or
optimizing characteristics (e.g., avoiding singularities and
deadlocks) (Li and Latombe, 1997; Ferbach and
Barraquand, 1997), or to decide the sequence of motion
profiles for a task (e.g., pushing a box and fetching an
object) (Billard and Kragic, 2019; Fang et al., 2020). On the
other hand, the motion pipeline required by a surgical task is
complicated but clearly given in clinical practice (Cao et al.,
1996). However, the wristed structure of the instrument and
limited joint ranges render a smaller size of feasible space
manifold and makes it challenging to coordinate the end-
effector and whole-body motions. Only a few existing
works tackle 6-DoF motion control of a robotic instrument,
including learning from demonstration to perform a com-
plex but single motion step like looping for knot tying (Osa
et al., 2017). However, it requires collection of totally
4 datasets with > 50 individual demonstrations to cover
different conditions for a suture looping motion step. In
Chiu et al. (2021), grasping a surgical needle is planned by
reinforcement learning, which also depends on 1000 pre-
recorded simulated grasps to learn this particular motion
step. Aiming at task-level autonomy, there are works that
introduce convex optimization (Sen et al., 2016) and visual
servoing (Pedram et al., 2020) to plan the motions required
for needle manipulation in wound suturing. However, how
to ensure feasible trajectories for twisted maneuvers, which
commonly occur when re-orienting a target (e.g., a tissue or
needle), are not rigorously provided. Similar issues also
exist in repetitive target contact like debridement (Narazaki

et al., 2006), where poorly planned motions could easily
lead to premature collisions. As the majority of previous
works only focus on a certain step, we will summarize the
state-of-the-art approaches for each subproblem in surgical
motion autonomy first, and then the works of task-level
automation strategies, and their limitations.

2.1. Automating basic motions

Pioneer works of robot-enabled instrument manipulation in
surgical applications have targeted positioning of an in-
strument to registered poses, for example, the tissue cutter in
prostatectomy (Kwoh et al., 1988) and the biopsy probe in
neurosurgery (Davies et al., 1991). Combining clinical CT
data, planning an optimal port placement and/or admissible
path of the instrument becomes available to provide a safe
referenced position for localized treatment (Schweikard
et al., 1993; Adhami and Coste-Manière, 2003). Among
these works, the concept of motion planning is limited to
generating a deterministic path using an industrial robot arm
for the instrument through admissible space without actual
manipulation process or constraints. Funda et al. (1996)
computed the optimal robot motion of for adjusting the gaze
of the laparoscope subject to the remote center-of-motion
constraint, which is widely adopted in MIS procedures. To
include online feedback, Wei et al. (1997) applied visual
servoing to adjust the robot-mounted laparoscope by
tracking the instruments from the images. The method is
also adopted in Krupa et al. (2003); Osa et al. (2010) to
actuate a surgical instrument to a feature-defined target by
minimizing image-based errors. However, the main dis-
advantage is that it requires continuous monitoring of visual
features during manipulation, which could not robustly
define a 6-DoF goal pose during the motion or provide re-
planning strategy. To deal with multi-instrument environ-
ment, Preda et al. (2015) used sampling-based planning
scheme (RRT-connected algorithm) for planning collision-
free motion step for multiple instruments. Sozzi et al. (2019)
proposed a DS-based approach with waypoint selection to
actuate a non-wristed instrument with collision-free path to
another instrument. The work in Marinho et al. (2019)
proposed vector fields to guide the motion of a regular
instrument with RCM constraint. Aiming for task-specific
motion constraints, a few works adopt the method of
learning from demonstration (LfD) to automate complex
multi-arm coordinated trajectories like suture looping in
knot tying or needle insertion (Osa et al., 2017; Schulman
et al., 2013; Schwaner et al., 2021) to avoid modelling
complex trajectories. However, it requires pre-recorded
motion data for each type of task and is unable to deal
with unexpected changes of task process. Notably, most
above works used robot-mounted regular surgical instru-
ment with only 4-DoF motions instead of a wristed robotic
instrument. More recently, the work in Chiu et al. (2021)
further introduced reinforcement learning (RL) policy to
generate robotic instrument motions. To feed the online
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robot states to the system, continuous visual tracking of the
instrument features is required via stereo images.

All previously mentioned works only focused on fea-
sibility study completing a certain motion/task successfully,
but failed to define generic safety features to be required by
surgery automation to avoid execution-level uncertainties,
which is of highest priority in surgeon’s perspective
(Narazaki et al., 2006). There also lacks a unified solution to
deploy those safety features across different tasks as well. In
this work, we provide a DS-based framework with rigorous
proof of global motion stability and trajectory reachability,
such that it could handle stable motions to all task-relevant
motions.

2.2. Automating contact motions

Interacting surgical instruments to the environment also
constitutes a majority of motion steps in surgical tasks. In
MIS, legitimate contact include non-invasive contact
(e.g., palpation for tumor localization), grasping (e.g.,
toward a piece of tissue debris or surgical needle), and
invasive contact (e.g., inserting a needle into tissue). To
this end, Patil and Alterovtz (2010) addressed manipu-
lation required for tissue retraction by selecting optimal
grasping point, but didn’t specify the exact motion to
safely grasp the tissue in advance. Since then, there are
works addressing 6-DoF instrument-based manipulation
of soft tissues for tissue dissection (Murali et al., 2015;
Nagy et al., 2018) and deformation control (Li et al.,
2020). The works in Kehoe et al. (2014); Hwang et al.
(2020) automated target grasping in a peg transfer task,
which is commonly used in surgical training for novice
surgeons. Among them, the instrument targeting and
grasping process were executed separately to avoid
unsafe tool-target contact, and the grasping orientations
highly resembled each other. Meanwhile, efforts have
been made to needle grasping in wound suturing.
Schulman et al. (2013) introduced LfD to automate
manipulation and grasping of a needle with pre-recorded
trajectories. The process had also been automated in
terms of direct pick-up (D’Ettorre et al., 2018) and
needle hand-off (Chiu et al., 2021; Pedram et al., 2020)
using VS and LfD, respectively. A static needle was
targeted and grasped using visual feedback as the motion
input, which could reduce reliability when dealing with
awkward grasping poses.

One mutual limitation of these works is that they all
regarded grasping as separated steps with a fixed sequence
rather than a reactive process, which could be re-planned
under sensing/motion disturbances. The motion constraint
during target contact should be embedded as well with the
aforementioned safety features, but remains an unmet
problem in surgery autonomy. We interleave manipulation
and contact motion together as a GVM model, such that the
robot will adaptively transit between tool-centric or target-
centric actions with global stability.

2.3. Automating task-level procedures

Completing the pipeline of a surgical task based on step-
level automation is the main goal to achieve task-level
autonomy. Researchers have approached various individ-
ual surgical tasks with different sub-steps and different
controllable DoFs required for the tasks. Works include
autonomous field of view control of endoscope in Agustinos
et al. (2014); Nageotte et al. (2006); Voros et al. (2006);
Yang et al. (2019) that used VS technique to track a pre-
defined visual feature to allow hands-free adjustment in-
traoperatively. In Kehoe et al. (2014) and Hwang et al.
(2020), the authors targeted simulated surgical debridement
with the instrument trajectories being performed using
model predictive control and pose-to-pose interpolations,
respectively. Given the targets’ positions, the instrument
autonomously manipulated, grasped, and cleared the debris
sequentially. Meanwhile, there are efforts targeting auton-
omy of tissue-based procedures, including non-invasive
tasks like tissue palpation (McKinley et al., 2015;
Nichols and Okamura, 2015) for tumor localization, and
invasive tasks like tumor ablation (Hu et al., 2015), tissue
dissection (Murali et al., 2015; Nagy et al., 2018), blood
area detection, and suctioning from vessel rupture (Richter
et al., 2021). Targeting more complex tasks like knot tying,
Osa and Van Den Berg (Osa et al., 2010; Van Den Berg
et al., 2010) automated single knot tying in suturing based
on LfD.

Suturing is one of the most common but complicated
tasks to be performed in MIS. It contains a long sequence of
motion steps, involving dexterous manipulation of a needle
and dual-arm coordination. Automating such tedious task
could significantly reduce human workload, and thus has
gained attention from researchers. For example, the works
in Kapoor and Taylor (2008); Nageotte et al. (2005) have
planned an optimal trajectory to automate the insertion
process of a half-circle surgical needle into the tissue. A
complete stitching automation process was given by
Nageotte et al. (2009) including entry point planning, pose
sensing, manipulation, and stitching of the suturing needle.
However, these only constitute incomplete steps required by
the suturing guideline. There are also studies addressing
hand-off of the needle between two instruments using
human–robot collaborative approach (Mikada et al., 2020;
Watanabe et al., 2016, 2017), and also autonomous ap-
proach (Varier et al., 2020; Chiu et al., 2021) using RL-
generated motions. Zhong et al. (Zhong et al., 2019) further
addressed active tissue deformation during needle insertion
to improve insertion accuracy. Lenard and Shademen
(Leonard et al., 2014; Shademan et al., 2016) proposed a
suturing device to inherently simplify the suturing task
while ensuring a firm stitch. However, the needle size and
stitch width could not be customized restricted by the tool.
Meanwhile, only a few works have completed a throw of
wound suturing. Sen et al. (Sen et al., 2016) provided an
optimization-based approach to automate a four-throw
suturing task, but does not support online trajectory
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re-planning due to tool-target motion disturbances with
theoretical proof for motion stability. Pedram et al. (Pedram
et al., 2020) completed an automatic single-throw suturing
process using dual-arm coordination using a VS-based
control framework. The instruments are visually tracked
during the manipulation, which was reported to own ac-
curate targeting accuracy. However, continuous visual
sensing might hinder its applicability to deal with large
orientation change. We are unaware of any existing works
that provide systematic safety features for complex in-
strument manipulation in one or more surgical tasks.

3. Preliminaries

3.1. Problem formulation

Performing a surgical task is essentially to manipulate a
robotic instrument from pose to pose in SE(3) space across
all motion steps. Under any (instant) robot configurations, a
6-DoF goal pose of the robot’s end-effector (i.e., the in-
strument’s distal tool) is assumed to be available. It could be
either computed from online sensoring feedback or from
user input. One common method is to add image-based
markers on the display (e.g., labeling the tissue’s dissecting
trajectory or the wound position for suturing), as a surgeon’s
decision and supervision remains critical to reduce uncer-
tainties of target recognition in supervised robotic surgery
(Haidegger, 2019). Although computerized surgical image
analysis has gained considerable attention to assist target
localization (Loukas, 2018), we emphasize that our aim in
this work is an autonomous framework to perform robot
motions safely and reliably instead of comprehensive de-
tection algorithms.

Due to the delicate nature of surgical tasks, we define
safety for task autonomy to be decomposed into the fol-
lowing two parts: 1) There must be theoretical proof to
globally guarantee that the robot motion is admissible in
every (future) time instant, and the goal state can be
smoothly and stably arrived. The term “global” indicates it
should apply for any admissible initial/final robot states, and
2) the robot motions must be able to deal with obstacle
avoidance (both tool-tool and tool-tissue), joint limit
avoidance, etc. The first part is of primary concern which
has not been systematically addressed. The second part
consists of basic safety properties. We especially target
“twisted” motions where the distal articulated joints ex-
perience large-range adjustment ð> 90°Þ, and the robot state
especially of SO(3) is significantly tuned ð∼ 180°Þ, which is
normally used in surgery for flipping the grasping orien-
tation of a suturing needle and/or tissue. Such motion might
approach the edge of admissible robot workspace manifold,
which is nonconvex due to small joint motion range of the
two distal joints (±90°). To inherently maximize the per-
formance of system response, the workspace constraints
should be embedded into the control model rather than
iterative approaches. The subproblems of instrument non-
contact manipulation and contact motion control are

processed under the same core in an integrated DS, and must
be applicable to all motions appeared in one or more tasks.

3.2. Nomenclature

We regard the entire structure of the detachable tube-like
instrument and its proximal motorized joints (totally
7 DoFs) as a surgical robot (or just “robot” if not further
clarified). We call the distal structure of the instrument to
achieve clamping, grasping, etc. as the “tool,” which is also
the end-effector in robotics. To detail the workspace control
problem, we use the robot’s 6-DoF end-effector pose (de-
noted by a 3D Cartesian coordinate frame F ) or its cor-
responding state X (computed from a newly proposed set of
space parameters) to represent the robot’s present or goal
configuration. The acronyms appeared in this article have
been listed out in Table 1.

4. Robotic instrument model

We begin by derive the kinematics of a robotic surgical
instrument based on its mechanical properties. A typical
serial-link manipulator generally owns six joints to fully
determine the 6-DoF pose of the end-effector (SE(3) space)
in 3D Cartesian space modelled by a coordinate frame
F eðOe, xe, ye, zeÞ, which could also describe the robot’s state
space x2R

6 in robot kinematics with the following well
known form:

x ¼ fðqÞ (1)

with q ¼ ½q1 … q6�u denotes the generalized coordinate
vector in joint space that describes the robot joint angles. As
robot joints are mostly revolute, the mapping f(�) is usually
nonlinear and indicates a coupled relationship between the
end-effector’s position and orientation while being regu-
lated. Such property remains in velocity mapping using the
Jacobian matrix JðqÞ 2R

6×6:

_x ¼ JðqÞ _q (2)

Then, adjustment of the end-effector’s pose will inevi-
tably lead to movements for all six joints. Considering a
complex motion step, the more “twisted” trajectory the end-
effector undergoes, the more details are to be planned for
describing its profile. Moreover, the limited joint motion
ranges (±90° for the last two joints) results in a nonconvex
reachable workspace manifold, where the path should be
further refined to avoid all infeasible regions. Existing
approaches deal with such trajectory complexity using a
priori workspace analysis (Mirrazavi Salehian et al., 2018)
or iterative optimization (Zucker et al., 2013), which could
not guarantee real-time and/or theoretically feasible output
in such high-dimensional space, and are unsuitable for
surgical applications where the environment is usually
temporarily set up and must not sacrifice efficiency. Thus, a
new parametrization method is to be developed to re-
formulate the kinematic relationship between the robot’s
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proximal parts and its end-effector. Here, we introduce the
concept of skeleton node analysis that regards each junction
(or the “elbow”) between two consecutive links (or the
“limbs”) along the robot skeleton as a point of interest.
Specifically, we define a 3D point p2R

3 in Cartesian space
as a skeleton node of the robot if it satisfies either of the
following criteria:

· It is the intersection point of the rotary axes of two
consecutive robot joints.

· It is the intersection point of the rotary axis of a robot
joint and the geometric centerline of a link (regarding
straight rigid links).

· It is the origin of the end-effector’s 3D Cartesian co-
ordinate frame.

Meanwhile, we disqualify a candidate if it overlaps an
existing node which has already been defined from proximal
robot parts. The general form of a node set considering a 6-
DoF serial robot manipulator could be given as follows:

N ¼ f n1 n2 … nk g (3)

where the dimension of the node set N being
k 2 ½2, 12� : k 2Z

þ, which is associated with the number of
non-zero link length/offsets due to different kinematic de-
sign and does not necessarily correlates to the number of
joints (see Figure 1 for the examples ofN on different types
of robots). This implies the skeleton node analysis em-
phasizes an explicit 3D geometry of the robot’s kinematic
chain relative to the end-effector, which is not achievable by
using the Denavit–Hartenberg convention (DHc). Mean-
while, one can denote n 3D position unit vectors as a set
V ¼ fν1 ν2 … νkg referenced from the corresponding n
skeleton nodes and head to arbitrary directions. Each vector,
named as the nodal vector, is described in robot base frame
and is virtually fixed to the skeleton and thus is adjustable by

all joints proximal to the attached node. Such group of nodal
vectors are then denoted by Ξ2R

k×3, with

Ξ ¼ ½ ξ1 ξ2 … ξk � (4)

Normally, for an arbitrary node ni, i 2 [1, k], there always
exists a nonlinear and variable transformation between it
and the end-effector (except νk) regarding its distal joints.
No consistent geometric relationship between the nodal
vectors and the end-effector could be derived.

We then use the skeleton nodes to analyze a robotic
surgical instrument implemented to MIS. Without loss of
generality, we consider the structure of the EndoWrist (by
Intuitive Surgical Inc) which has been widely adopted for
designing robotic surgical systems, and regard it as a typical
example to study surgery autonomy.1 The instrument owns
a slender cylindrical shaft that provides 4-DoF RCM-
constrained motions to yield the minimally invasive
setup, a 2-DoF wristed joint set to provide wristed motions,
and one extra DoF for tool actuation. Such kinematics leads
its skeleton node set to be degenerated into the following
form sufficed by k = 3:

N ¼ f n1 n2 n3 g (5a)

Ξ ¼ f ξ1 ξ2 ξ3 g (5b)

where Ξ2R
3×3, and the nodes n1, n2, and n3 geometrically

represent the shaft-to-wrist junction xs 2R
3, the wrist-to-

tool junction xw 2R
3, and the tool tip xt 2R

3, respectively,
as shown in Figure 2. Then, due to the 3D geometric
constraint of a wristed robotic instrument, one can define the
following orthogonality that unconditionally holds:2

4 ξu1 … 01×3
« ξu2 «

01×3 … ξu3

3
5
2
4 lh
lv
m

3
5 ¼ 09×1 (6)

where m indicates the longitudinal unit vector (or heading)
and lh and lv being two lateral unit vectors with respect to the
tool’s heading orientation (refer to Figure 2 for illustration).
If one considers a typical end-effector frame
F eðOe, xe, ye, zeÞ using DHc whose origin position overlaps
xt, the following factorization could also be derived:

½ lh lv m � ¼ H½ x!e y!e z!e � (7)

whereH2R
3×3 is the constant orthogonal matrix computed

by a series of fundamental transformations. Notably, this
reveals for any wristed robot manipulators, its end-effector
orientation could be interpreted by intermediate body parts
(characterized by nodal vectors) via a constant geometric
relationship.2 The nodal vectors could also be depicted as
ξ1 ¼ k1 x

!
e, ξ2 ¼ k2 z

!
e, ξ3 ¼ k3 y

!
e. This is an important

kinematic property for us to study the robot’s whole-body
motion coordination subject to task-relevant constraints.
Here, to yield (6), we could select one group of nodal
vectors for the instrument:

Table 1. List of acronyms used in this article (in alphabetical
order).

Acronym Definition

DAS Dynamic attraction state
DHc Denavit–Hartenberg convention
DoF Degree-of-freedom
DS Dynamical system
GVM Goal-varying manipulation
LfD Learning from demonstration
MIS Minimally invasive surgery
MoB Mode of behavior
NSS Nodal state space
RAMIS Robot-assisted minimally invasive surgery
RCM Remote center-of-motion
RL Reinforcement learning
SMA Sequential motion allocation
SMP Surgical motion primitive
VS Visual servoing
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ξ1 ¼ z!6 ξ2 ¼ z!5 ξ3 ¼ x!6 (8)

where z!5, z
!

6 denote the axial direction of the respective
joint q5 and q6 from robot base, and x!6 being along the
tool’s heading direction.

We decompose the robot joints correspondingly into the
following:

q ¼ ½ qs q4 q5 q6 �u (9)

where qs ¼ ½q1, q2, q3� 2R
3 denotes the joints that control

the shaft pose, and the rest regulate the wristed part of the
instrument. Then, combining DHc to the skeleton nodes, we
further give the derivation of the nodal vectors computed
with respect to the robot base frame:

ξ i ¼ RsðqsÞ∏
3

i¼1

iþ2Riþ3ðqiþ3Þξ i, i ¼ 1; 2; 3 (10)

where Rð�Þ 2R
3×3 denotes the rotation matrices and ξ1;2;3

are the nodal vectors described in local frames. In the next
section, we will implement ξi as a new media for the robot’s
present-to-goal model and for versatile motion control of the
robot’s end-effector as well as the body skeleton.

5. Motion-level autonomy architecture

Based on the above modelling, we first aim to regulate the
robot’s end-effector to reach an arbitrary (but feasible) goal
pose by proposing a basic control architecture to provide
safety features to the robot’s motions. We then extend it to
yield more task-relevant motion constraints and utilize the
derived properties to integrate a series of dexterous ma-
neuvers into a single motion step.

5.1. DS-guided instrument manipulation

5.1.1. End-effector control system. The DS is an effective
mathematical approach to generate stable, convergent robot
motions which are efficiently reactive to instant state var-
iations and/or disturbances. This endows DS-guided ma-
nipulation with powerful adaptability in motion re-planning
without the need to analyze the entire trajectory (compared
to optimization-based approaches), which is superior to
tackle robot manipulation once the motion constraints are
embedded into the system model.

We aim to incorporate the instrument’s kinematic
property using NSS analysis to the DS to enable globally
guaranteed safe instrument manipulation planning. We start
by giving the general form of a time-invariant nonlinear
dynamical system as follows:

_ζðtÞ ¼ gðζðtÞ, uðtÞÞ (11)

which indicates the evolution of the system’s states ζ (t)
subject to the control input u, and g(�) denotes the differ-
entiable vector-valued function. To apply such technique to
robot’s motion generation, the robot states ζ (t) must be
appropriately defined to enable its dynamics (via g(�)) to
guide the robot with demanded performances as the system
evolves over time. The states are usually defined as the 6-
DoF end-effector pose or configuration space (Mirrazavi

Figure 1. The definition of “nodes” on different types of serial robot manipulators: a) the UR5 as a typical robot arm; b) a hyper-
redundant robot arm (Li and Chen, 2015); c) the EndoWrist as a representative of robotic surgical instrument; and d) a highly wristed
non-redundant robot with only three links (with DoFs being 3R-P-2R).

Figure 2. Kinematics of the wristed instrument and the illustration
of the nodes and nodal vectors according to our definition.
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Salehian et al., 2016) and thus, gð�Þ :R6l1R
6. Here, unlike

the above methods, we use the nodal vectors to encode the
relationship between the robot’s present and goal config-
urations based on its body parts. Consider an arbitrarily
defined F gðOg, xg, yg , zgÞ as the target pose to reach, we
particularly introduce a new parametrization spaceHwhich
is defined as follows:

ηðqÞ ¼

2
664
η1
η2
η3
η4

3
775 :¼

2
664
d*

�
xs, xsg

��
ξ1, x

!
g

��
ξ2, z

!
g

��
ξ3, y

!
g

�
3
7754H4R

4 (12)

where the parameters η2, η3, η4 depict via inner product the
orientation alignment of the end-effector from its target, xsg
is the goal position of xs computed from F g. The scalar
d*ð�Þ ¼ xus ðxs � xsgÞ=

��xs � xsg
��2 defines the signed dis-

tance of xs from xsg via vector projection. Note that getting
xsg requires computation of inverse kinematics which could
not be analytically solved due to the coupled position and
orientation. Here, we compute a “naive” but also closed-
form ~xsg

~xsg ¼ xg � xt þ xs (13)

from the knowledge of distal joints (encoded by xt(q) which
are uncontrollable by xs(qs). Note that in (13), ~xsg is derived
based on the instant forward kinematics, which provides
“coarse” guidance towards the end-effector’s goal position
using only qs. However, we will later show that such ~xsg
does not affect the performance of the target DS and could
converge to its genuine value subject to robot control. We
name H as the nodal state space (NSS) which characterizes
the robot’s goal-oriented spatial relationship using the
skeleton features of the nodes. The robot’s current state X
and goal state X g could now be reformulated by the
components in (12) as follows

X : ¼ ½ xs ξ1 ξ2 ξ3 �u,
X g : ¼

�
xsg x!g y!g z!g

�u
:

(14)

Now, we will use “state” in (14) to describe the robot’s
status which is equivalent to a 3D Cartesian space, as we
aim to solve automation via Cartesian workspace analysis.
Several properties that NSS could contribute to robot
motion guidance are highlighted.

Proposition 1. η(q) has a globally unique equilibrium η*
with η* = 0.

Proof. Regarding η1, any given (feasible) xsg will cor-
respond to a globally unique solution of qsg, as the local
kinematics xs = fs(qs) Cartesian workspace manifold
being a solid sphere (From, 2013). This shows that fs(�) is
convex and non-singular for regulating η1. Meanwhile,
according to (12), there exists multiple solutions of ξ i+1
to satisfy ηi = 0 (i = 2, 3, 4). However, we will prove in
Proposition 2 that due to the joint limits of the

instrument, only one ξ i+1 is physically reachable subject
to xs → xsd, which further corresponds to a globally
unique qi+3. Thus, there exists a unique q to meet ηi =
0 for i = 1, 2, 3 for any feasible X g interpreted by F g.

Proposition 2. Given a 3D unit vector vr based on F g

and a nodal vector ξ i(qs, qi+3) of node ni (i = 1, 2, 3), there
exists a unique solution q*iþ3 for ξi such that vr

uξ i(qi+3) =
0 subject to qs → 0.

Proof. According to (10), the derivation of the nodal
vector ξ i is simplified to the following:

ξ i ¼ Ciþ2Riþ3ðqiþ3Þξ i s:t: qs → 0 (15)

where the variation of the rotation matrix C2R
3×3 is

negligible due to the settled proximal robot parts. Ri+3 is the
fundamental z-axis rotation matrix which acts as a peri-
odical factor applied to ξ i and is solely regulated by qi+3.
Thus, ξi has a period of 2π subject to change of [qi+3, qi+3 +
2π], as its components own the following form:

ξ i, j ¼ a1 þ a2cosðqiþ3Þ þ a3sinðqiþ3Þ, j ¼ 1; 2; 3 (16)

where a1, a2, and a3 are constant scalars. Therefore, there
are two possible solutions of qi+3 for ξ i = vr

uξ i(qi+3) =
0 within 2π. For surgical robots, the motion ranges of the
two distal joints qw and qt are limited to [�π/2, π/2]. Thus, it
is impossible to generate two toggled directions of ξi. There
exists only one qi+3 that satisfies vr

uξ i = 0 within the robot’s
feasible workspace (i.e., [q�i+3, q

+
i+3]) to yield ηi = 0 (shown

in Figure 3(b)). That corresponds to the unique solution of
ξ i, denoted by ξ*i . Meanwhile, the direction of vector ξ i
periodically changes through [qi+3, qi+3 + 2π], which
sweeps ξ i through a circle whose center being exactly the
position of niwithin a plane πξi (see Figure 3 for geometrical
interpretation).3

Now, we establish a dynamical system to guide the
instrument end-effector to its target pose. The NSS H4R

4

are defined as the state variables, and then due to Propo-
sition 1, there exists a globally unique equilibrium at origin,
that is, η* = 04×1. u is of _q or q only. Thus, we propose the
following controller:

u ¼ �
	
∂ηðqÞ
∂q


�1

ΓηðqÞ (17)

where M is the Γ2R
6×6 _ 0 is the diagonal gain matrix

applied to joint velocities. Then, by applying the control
input u ¼ _q and substituting (17) to _ηðqÞ leads to the
following:

_η ¼ �Γη (18)

which clearly indicates an asymptotically stable DS (with
sole negative real parts in phase plane analysis) whose the
attractor is exactly η* = 04×1. Its evolution guides the in-
strument motions via _qðtÞ to reach the end-effector F e to
any feasibleF g. As η is also bounded due to (12), from (18),
the DS that regulates η is globally asymptotically stable
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from Lyapunov stability theory as each equilibrium in η* is
globally unique (refer to Proposition 2) (Slotine and Li,
1991). The system is also ofC1 continuity as (1) and (10) are
all differentiable regarding both _qðtÞ and q(t).

Remark 1. Deploying the controller (17) to robot’s
target-reaching control requires interpretation of a F g to
η. F g is normally provided as a 3D Cartesian coordinate
frame for task-oriented robot manipulation. Then, ac-
cording to (6) and (7), η2,3,4 are all computable.
Meanwhile, we use ~xsg as in (13) as approximation of xsg
to avoid computing inverse kinematics, which is not
differentiable for on-the-fly manipulation guidance.

5.1.2. Sequential motion allocation (SMA). The current
form of DS only addresses the convergent motion of the
end-effector to a goal pose and does not necessarily
guarantee the feasibility of the in-process trajectory. Sur-
gical tasks commonly require grasping the needle and tissue
from specific poses to minimize potential trauma. When
transitioning between awkward poses, the robot might
encounter joint limits and/or near-singular configurations.
In terms of a serial robot manipulator, one robot joint could
parallelly tune different η. Therefore, regulating a specific ηi
might cause disturbances to other (distal) ηj, j> i, j2N

þ,
which could decrease the overall control effectiveness and
target reachability.

To solve the above issues, new constraints must be
added to the system improve the instrument’s manipulation
delicacy. Here, we introduce the sequential motion allo-
cation (SMA) that progressively allocates the regulation
output from proximal to distal robot joints. This will fa-
cilitate “rhythmic” movements of the robot’s body parts
and avoid “clumsy” joint motions, which could be harmful
to both the robot and the environment. We achieve SMA
by proposing a new set of state-based parameters λ2R as
the nodal allocation coefficients to dynamically weight the
control output deployed to η for each node based on (12)
and (17). The definition of λ is chosen by considering the

following properties to meet the task-relevant motion
characteristics:

1. We set all coefficients to λ2 ½0; 1�4R, λ2C0 to nor-
malize the scales of all η among different between types
of robot joints and/or their different ranges of motion
during regulation. λ = 1 and λ = 0 indicates the motion
output that regulates the corresponding η has been fully
deployed and suspended, respectively.

2. To achieve sequential actuation of the skeleton nodes,
the λi that allocates the regulating motions to the current
ηi should initiate posterior to the elevation of the pre-
vious (proximal) λi�1. This is interpreted as λi�1 ≥ λi
"λi�1, λi 2 [0, 1].

3. To incorporate SMA to whole-body coordination, λi
needs to open a gap to the rising λi�1 ahead, but also
needs to catch up with λi�1 as λi�1 → 1 to eventually
enable full regulation. This indicates the boundary
conditions of λi(x) to yield _λiðxÞjx¼0 ¼ 0"i and
_λiðxÞjx¼1 ¼ 1,"i> 1 with x = λi�1.

All λ will constitute a space L whose dimension cor-
responds is equal to that of H, with
λ ¼ ½λ1, λ2, λ3, λ4�u 2L4R

4.
A feasible mathematical form of λ to achieve SMA could

be given as follows:

λi ¼
�
expð�k1kη1kÞ, i ¼ 2
expð�kið1=λi�1 � 1ÞÞ, i> 2

(19)

where ki is the preset gain for each λi. We set ki = 1"k > 1 to
meet lim

λi�1 → 0
_λiðλi�1Þ ¼ 0"i. The definitions in (28) shows

that to initiate SMA, λ1 needs to be exclusively modelled
apart from the others. Once η1 → 0, the control output will
be smoothly allocated to the next node with η2 by elevating
λ2, and vice versa. The subsequent λi are tuned directly
based on λi�1 to ensure a robust and flexible SMA process
regardless of the robot’s initial/final state or its control
input.4

Figure 3. Geometric representation of the variability of Ξ subject to qi+3 in a), and the solution uniqueness to achieve vr
uξ i(qi+3) =

0 when considering the physical joint motion of qi+3 in 3D workspace in b). Respectively, q�iþ3, q
0
iþ3, and qþiþ3 denotes the negative

limit, zero position, and positive limit.
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u ¼ Lu (20)

with

L ¼
�

1 01×3
03×1 diagðλÞ3×3


2R

4×4 (21)

Remark 2. In (28), λ1 is only used as a reference to
proceed the SMA under ||η1|| → 0, and at any time in-
stant, deviation of η1 off 0 will suspend and restart the
whole SMA process until η1 converges again. This
implies the instrument’s position (via η1) is always
regulated prior to the orientation (via η2,3,4) due to the
“weak coupling” effect of the instrument’s end-effector
pose. This is a demanding motion constraint in instru-
ment manipulation, as the position misalignment of the
end-effector caused by η1 becomes significantly larger
than that by η2,3,4, also thanks to the “weak coupling”
effect (see Appendix A for mathematical explanations
how “weak coupling” appears on a wristed robotic
instrument).
One main advantage of introducing SMA to the DS-

guided instrument manipulation is that the whole-body
robot trajectory subject to (18) becomes always feasible.
This is led by (28) which enforces the regulation of a

specific ηi, i > 1 to be always accompanied by a settling ηi�1.
This further transforms the state space representation (12)
into:

ηi ¼
�
Ciþ2

iþ2Riþ3ðqiþ3Þξ i�1

�u
ei*λi�1 → 1 (22)

with i = 1, 2, 3, where C3,4,5 are matrices whose variations
are negligible due to λ1,2,3 → 1, e1 ¼ x!g, e2 ¼ y!g, e3 ¼
z!g. Note that the regulation of each η is now dominated by
only one robot joint. Then, based on the property revealed in
Proposition 2 and the controller (17), the process of SMA is
transformed to a sequence of globally stable control sub-
systems coordinated by L. As long as F g is reachable, H
must be reachable and thus η = 0 could be reached by using
(17). Examples of state evolution upon SMA and its per-
formance when dealing with disturbances from η are
demonstrated in Figure 4.

Another explicit advantage of SMA is that the motion
control of the robot’s end-effector and body parts does not
rely on computing inverse kinematics and thus allows a
differentiable system, which could guarantee efficiency and
smoothness when dealing with complicated motions. Recall
the goal position of xs is coarsely computed as ~xsg in (13).
During the manipulation, movements of the distal joints
(e.g., q5,6) might change xe and also ~xsg, which generates
disturbance to η1 and also the whole SMA process. How-
ever, this facilitates ~xsg → xsg as “self-propagating” goal

Figure 4. Evolution of λ subject to ||η||, where a) denotes an undisturbed evolution with exponentially descending ||η||; b) evolution upon
slight increase of ||η|| during t 2 [150, 200]; and c) evolution upon large increase of ||η|| during t 2 [125, 175]. Note that the proximal λ
stays greater than the distal one to enforce sequential coordination.
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pose reaching process among H, as η2,3,4 are strictly
bounded and globally converges to 0. This together with the
“weak coupling” effect of the wrist kinematics leads xt to a
bounded disturbance which does not affect our control
system.

5.1.3. Collision avoidance. In this part, we briefly intro-
duce our framework to deal with obstacle avoidance. In
robotic surgery, obstacle avoidance mainly solves two
scenarios: tool-tool collision when performing dual-arm
surgical tasks within a shared workspace, and tool-tissue
collision to prevent trauma to surrounding tissues. As the
obstacles might be described as a single obstacle O or a set
of obstacles O ¼ fO1,O2,…,Ong from image-based
measurements, without loss of generality, we start by
considering a single obstacle identity O as a sphere (which
could be easily extended to lines or surfaces) with 3D
position xo. From robot kinematics and eye-to-hand data,
the closest point xclo on the robot skeleton relative the
obstacle, and its local Jacobian matrix Jclo 2R

3×3 can be
computed. Note that the position of xclo on the robot might
be changing upon robot motions. Then, by giving a min-
imum tolerant distance ro when avoiding collision (i.e., the
radius of the sphere), the avoidance could be done by
finding the tangent direction for the sphere O from xclo
There are infinite directions to satisfy such, but one could
choose the closest one to xsg � xclo to reduce trajectory
length. Thus, an instant target position xg,o for xclo could be
derived by letting

xg, clo ¼ xclo þ aeeg (23)

where eg 2R
3 is a unit vector that denotes the selected

avoiding direction and ae is a scalar denoting the target
motion speed. This indicates that we directly seek for ob-
stacle avoidance by deriving the escaping velocity to be
followed by the xclo. This allows that once xclo goes through
xg,clo, the tangent direction changes and then varies xg,clo
upon (23) such that the collision avoidance motion con-
tinues. Meanwhile, we monitor whether the obstacle still
obstructs the robot to reach the target by computing the
distance between xobs and the line formed by xgs � xg, clo.
Finally, we decide whether the robot completes obstacle
avoidance by the following

X g ¼
�X o, fo

�X ,X p,po, ro
�
≤ 0

X p, fo
�X ,X p, po, ro

�
> 0

(24)

where fo(�) denotes the scalar function that compute the
aforementioned point-to-line distance subtracted by ro. X o

is the end-effector state for collision avoidance constructed
by xgwith unchanged orientation, as the local Jacobian only
regulates the 3D position of xclo. For practicality, to avoid
abrupt change of the instant target state led by (24), one
could apply linear fusion of two states to achieve smooth
state transition.

5.2. Integrated planning and control

Apart from instrument manipulation, a majority of surgical
instrument tasks (e.g., dissection and suturing) involve
reaching and contact a specific target. The end-effector is
normally manipulated to a proper candidate pose first
(i.e., the tool-centric action) and then proceed to the final
contact phase (i.e., the target-centric action) to could avoid
unnecessary collisions or hazardous movements (Cao et al.,
1996; Jun et al., 2012). Coordination between these two
actions should be based on online awareness of the tool-
target situation such that it could adaptively decide whether
the robot is ready for contact or requires further adjustment.
To this end, instead of regarding them as separated steps, we
propose a unified strategy that integrates the tool-centric and
target-centric actions to a single motion step to facilitate
safer, smoother, and more efficient motion performance.

Recall the instrument’s goal configuration described by
frame F g, It now also needs to by used to guide the end-
effector to direct contact a target besides manipulation
(mostly grasping an object). To this end, we extend F g to
two poses, the pre-contact pose F p and a contact pose F c to
be reached by the instrument’s end-effector. It should be
noted that F c is usually computed via online sensoring
feedback or assigned by a user, and F p is computed based
on F c which should be reached in advance in order to
proceed to the contact safely. Then, we define a known end-
effector trajectory ρ(τ(t)) from F p to F c to be tracked by the
end-effector to clear the final tool-target distance for fin-
ishing the contact, which also exactly defines the target-
centric action. The parameter τðtÞ ¼ ½0; 1� 2R denotes the
progress of the trajectory and is of class C1. Thus,
the appearance of τ enables a dynamic F g and leads the
differentiation of η, currently of XðqÞ and X gðτÞ, to the
following extended form:

_η
�XðqÞ,X gðτÞ

� ¼ ∂ηð�Þ
∂XðqÞ

∂XðqÞ
∂q

_qþ ∂ηð�Þ
∂X gðτÞ

�X c � X p

�
_τ

(25)

whose evolution performance could be proved globally
stable as of (18) by deploying the following controller

u ¼
	
∂XðqÞ
∂q


�1	 ∂ηð�Þ
∂XðqÞ


�1

	
∂ηð�Þ
∂X gðτÞ

�X p � X c

�
_τ � Γηð�Þ


 (26)

which not only stabilizes η to 0 as in (18) but further guar-
antees that the robot state X will converge to the following

lim
t→∞

X ¼ X g ¼ τX c þ ð1� τÞX p (27)

which indicates that the robot state will now arrive exactly at
the prescribed trajectory ρ(τ) that connects X p and X c. The
instant X g to be reached by the robot is determined by the
value of τ whose online adjustment will specifically enable
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lim
t→∞

kηð�Þk ¼ 00X ¼
(X c, lim

t→∞
τ ¼ ∞

X p, lim
t→∞

τ ¼ 0 (28)

where the performance of regulating η will not be af-
fected by the change of τ, but meanwhile facilitates a
self-tunable end-effector goal pose X g. We define this as
a goal-varying manipulation (GVM) problem that fa-
cilitates the versatile robot motions via prescribed tra-
jectories and/or states, by setting X g to a set of target
states fX g1,Xg2,…,X gng that characterize the goal-
relevant manipulation process. Here, τ is also regarded
as the goal varying parameter (GVP) and will be used to
tune the robot’s instant goal state adaptively based on its
on-the-fly configuration η, in order to guide the robot
through specific motion patterns via a controllable
process upon the task’s needs. To make GVM contribute
to our case, we propose the following dynamics for τ:

_τðηÞ ¼ γð2 expð�κkηkÞ � 1Þ (29)

where γ and κ are the tuning parameters of the dynamical
performance. Particularly, the dynamics (30) owns the
following properties that contribute to our application in
surgical task autonomy.

· Property 1. The alignment of X to X g, characterized by
||η||, tunes both the magnitude and the direction of τ:

_τ ¼
(�γ, lim

t→∞
kηk ¼ ∞

γ, lim
t→∞

kηk ¼ 0
(30)

where alignment of the robot to its instant goal state will
elevate τ upon the tuning step up to γ, which carries forward
the prescribed GVM process, while misalignment (with
ηK0 renders _τ < 0 which rewinds the GVM process back as
_τ < 0 drags τ back to zero. This enables the manipulation
process to be regulated in an adaptive and bidirectional
manner guided by τ.

· Property 2. Based on Property 1, τ will reach 1 within
finite time. This can be proved that for any instant η, _τ > 0
holds once

ηðT1Þ<� 1

κ
ln
1

2
(31)

where T is the time instant when τ starts to elevate, and
obviously T < ∞ as limt→∞η = 0. Then, since _τ is mono-
tonically increasing, _τ > 0 will hold and further lead toZ TþT 0

T

_τdt > 1 (32)

where T0 < ∞ as well if we further saturate τ in discrete time
as

τðtkþ1Þ ¼
�
1, τðtkÞ þ _τðtkÞΔt > 1
0, τðtkÞ þ _τðtkÞΔt < 0 (33)

to enforce τ 2 [0, 1]. This property facilitates X g to land on
the final goal state (thanks to τ (30)) prior to X →X g to
ensure efficient and accurate guidance towards the target.

· Property 3. The boundary conditions of _τ subject to (30)
evaluated with respect to η are

∂_τ
∂η

����
η→∞

→ 0,
∂_τ
∂η

����
η¼0

¼ �2κγ (34)

which indicates that the tuning of τ is sensitive to the change
of η around the alignment situation (i.e., η → 0), and be-
comes relaxed under misalignment with η → ∞. This will
make τ rapidly descend away from 1 once encountering
misalignment between X and Xg.

During the adjustment of τ, we regard η as an external
input whose regulation is solely subject to (26). Note that
the introduction of GVM using τ on the basis of DS-guided
manipulation in (25) further integrates the trajectory plan-
ning and the motion control of versatile robot manipulation
steps to a unified solver. Selection of individualX g and their
connected trajectory ρ will enable versatile motion char-
acteristics, which could be either predefined or solved on-
the-fly.

The above GVM framework could be used to automate
typical instrument motions in robotic surgery. First, it could
solve delicate motions required for target contact. We can
simply defineX p whose orientation is identical to that ofF c

but with a constant position difference d along the tool’s
pointing direction, with

d > lw þ lt (35)

to ensure the tool-centric action keeps the manipulation
clear from the target before it reaches Xp. It degenerates ρ to
a line segment OpOc

���!
, such that the robot will first reach X p

with the orientation already suitable for contact, and then
clears the remaining distance d upon τ → 1 to finally reach
X c. Here, the tool-centric action (reaching Xp) and target-
centric action (reaching X c) are independent but smoothly
coordinated. Second, GVM can be applied for tracking
trajectories required by specific task-relevant motions (e.g.,
needle insertion path must follow its own circular curvature
to minimize tissue trauma). Here, ρ(τ) denotes a general path
which starts from X g1 and ends at Xg2. The GVP τ will
attract the robot to enter X g1 and then guide X to follow ρ(τ)
until X g2 is reached. Due to _τ in (25) and Property 3, τ will
smoothly elevates to 1 while ensuring that X could catch up
the varying X g. The overall model of the integrated plan-
ning and control framework is shown in Figure 5.

We briefly emphasize the superiority of our architecture
from a combined technical and practical perspective that
contributes to surgical applications. The introduction of
NSS to represent the robot’s present-to-goal variation
provides distinct modelling advantages. The global as-
ymptotic stability of (18) and (25) guarantees that the robot
can be stably maneuvered to any arbitrary feasible state with
smooth positions and velocities. Incorporating SMA then
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provides versatile planning of the robot’s goal-reaching
trajectory as well. They solve the issues of “the robot
could reach a goal” and “the robot knows how to reach a
goal” simultaneously using our framework via a mathe-
matically determined solver without prior knowledge or
online iterations. GVM then plays a role to solve “the robot
knows when to act” which picks up the last components
required for a motion-level architecture. Its capability to
transfer robot motion through different types of motions is
illustrated in Figure 6.

For surgical applicability, GVM allows motion con-
straints applied to the in-process trajectory, which makes it
powerful to solve delicate target contact motions, where a
constrained path is required to contact tissue via specified
poses to avoid unnecessary tissue trauma. Particularly, the
tool-centric action guarantees avoidance of premature
contact to the target, and the instrument will not approach
the target (at X c) before it reaches X p (s.t. η → 0). This
could avoid entanglement of the tool to the target before the
final phase of manipulation (i.e., X g →X c) is settled. In
addition, as the tuning of GVP τ is smooth and bounded, the
robot actions can be transferred smoothly as well.

6. Task-level autonomy architecture

In this section, we extend our approach to task-level au-
tomation such that it could complete the whole pipeline of
one or more surgical tasks. The key issue is to further define
a powerful motion descriptor that reveals the mutual be-
havior among individual motion steps while tolerating their
underlying differences. GVM has enabled safe target
contact by constraining the instrument motion delicately
during the final motion phase. However, how to guide the
instrument for clearance of the target or interact via specific
path are similar but different steps to be considered.

6.1. Surgical motion primitive (SMP)

To systematically entail these motion details, we propose
the notion of surgical motion primitive (SMP) based on
GVM as a generalized model to define surgery-related

instrument motions. The SMP characterizes a single-
instrument manipulation step into three progressive
phases:

· Phase I (Backward guidance): The robot is guided via
evolution of GVM through τ : 1 → 0, which is used for
target-centric action to escape the instrument escapes
from an already contacting object.

· Phase II (Free control): The robot is guided via evo-
lution of τ = 0 without GVM, which is used for tool-
centric action to reach the instrument to a target state
without contacting any target objects.

· Phase III (Forward guidance): The robot is guided via
evolution of GVM through τ : 0 → 1, which is used for
target-centric action or trajectory tracking, where the
instrument approaches and contacts a new target object
or follows specific path.

The current setting of our GVM can only achieve
consecutive execution across Phase II and Phase III. Thus,
we must modify GVM such that it is applicable to the whole
SMP. In this regard, we extend the validity of τ to Phase I
such that it must retract the end-effector from the target to a
safe position prior to Phase II. We define the initial pose as
X c0 where contact still exists, and the retracted state as X p0,
which is also the ending state for Phase I. Without loss of
generality, we maintain the relationship between them as
that of X c and X p, and their in-between trajectory ρ remains
a line segment and should be performed rapid by the in-
strument to avoid unnecessary contact. The GVP τ is also set
to 1 at X c0 and 0 at X p0. Thus, during Phase I, we need to
enforce _τ ¼ �c (with c being a positive scalar) to lead the
instrument to X p0 subject to τ : 1 → 0, which exactly re-
verses the process of Phase III. To smoothly connect Phase I
to Phase II, we equip τ with the following properties

X g ¼
�X p0, ϵ < τ ≤ 1

X p, 0 ≤ τ < ϵ
(36)

where ϵ is the threshold that coordinates Phase I and Phase
II. OnceX g switches toX p, the dynamics of τ is switched by
to (30) to regulate subsequent SMP phases.

6.2. Modes of behavior (MoBs)

Finally, we utilize SMP to define and automate the entire
pipeline of instrument motion sequences for different sur-
gical tasks. Although we define three consecutive phases
that form the single SMP, some instrument motion steps
might only involve one or two of them. For example, an off-
target manipulation can be fully performed by initiating
only Phase II. Retracting the instrument from an object to a
stand-by contact-free target could be done by using Phase I
and Phase II. To make SMP customizable to such motion
differences, we combine different motion phases and
generate the following five typical modes with their ap-
plication scenarios:

Figure 5. The schematic diagram of our integrated planning and
control framework using NSS η to represent and control the
robot instead of end-effector pose. GVM serves as an adaptive
planning policy that provides active guidance using the goal state
Xg via τ, which is reactive to obstacle avoidance.
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· Mode I (Phase II): The instrument motions is freely
adjusted via DS + SMA with no additional workspace
constraints and thus no GVM (τ = 0).

· Mode II (Phase I + II): The instrument leaves a con-
tacted object under constrained path to an off-contact
state guided via GVM with τ : 1 → 0.

· Mode III (Phase II + III): The instrument reaches and
contacts a target from an off-contact state (e.g., grasping
a tissue/needle) guided via GVM with τ : 0 → 1.

· Mode IV (Phase I + II + III): The instrument retracts
from the previous object via constrained path (τ : 1→ 0),
adjusts its pose (τ = 0), and then reaches and contacts a
new target object, with τ : 0 → 1.

· Mode V (Phase III): The instrument is guided through a
specific path with determined initial/final state τ : 0→ 1.

They are also defined as the MoBs, as they exhibit own
motion constraints while sharing the identical control ar-
chitecture, and are available to each SMP (see Figure 7 for
conceptual illustration). To achieve task-level autonomy, we
first utilize a chain of SMPs that govern each motion step in
the surgical task to construct the whole pipeline. Then, we
equip each SMP (or each motion step) with a specific MoB
according to its prescribed functionality. As the guidelines
for surgical tasks are already mature in clinical practice, the
MoBs could be preset for each task such that it could
successfully follow the procedure. In Figure 8, we dem-
onstrate the applicability of our framework to characterize
many different existing surgical tasks by selecting different
SMPs and MoBs, based on clinically adopted surgical
guidelines (Cao et al., 1996). The validity covers not only
intra-corporeal MIS procedures (e.g., tissue dissection,
wound suturing, and knot tying) but also other procedures
like robotic palpation and biopsy, which is generalized
framework compared to existing task-specific approaches.
Although each elementary motion has different constraints,

they could be set by five modes of behavior to form a
pipeline. For example, the specification for dual-arm su-
turing could be easily interpreted as 3-5-0-0-0-4-1 for PSM
1 and 0-0-3-5-2-1-2 for PSM 2 (where 0 means staying idle
in this step). This could all be preset in the framework as
long as the task type to be automated is determined, which is
very easy to specify. We will show later in our experiments
that the ability of coordinating motion execution process
adapting to the online robot-environment situation is critical
to improve the success rate and reliability of task autonomy.

7. Simulations and Results

In this section, we present our simulation setup and results
to demonstrate the motion-level performance of robotic
instrument manipulation. The simulations will be conducted
to reveal the following two main aspects of our approach:
How the robot motions are actuated to deal with delicate and
drastic manipulation steps, and how the strategy reacts to
different tool-target configurations when attempting to
perform interaction to a physical target.

7.1. Overview

We implement our algorithm framework on the Virtual
Robot Experimentation Platform (V-REP), which is then
interfacing to MATLAB R2017a (MathWorks Inc) via
remote API on a Core i7 2.8 GHz system without GPU
acceleration. In the simulation platform, we use the
virtual model of da Vinci Research Kit (dVRK) provided
by Fontanelli et al. (2018). The dVRK is a dual-arm
surgical robot with two wristed robotic instruments,
which are named as the Patient-Side Manipulators
(PSMs). Both two attached instruments are Large Needle
Drivers (LNDs) which is the typical selection in dVSS-
enabled RAMIS to perform delicate intra-corporeal
procedures like suturing. Virtual objects, either pegs or
a surgical needle, involve pick-and-place operation,
which is one common surgical motion type and is fre-
quently used as a proxy for generalized surgical dexterity
(Cao et al., 1996). Here, we will use them to define
practical task-relevant movement steps for evaluation of
instrument’s motions. The distance between the RCM of
the PSMs to the peg transfer objects are selected to around
150 mm which resembles the genuine robot-target con-
figuration during RAMIS. We do not apply dynamic
motion properties and interactions throughout the sim-
ulations, as we mainly investigate the motion behavior of
the instruments in 3D workspace. The detailed parameter
setup of our system is shown in Table 2.

7.2. Scene I: Complex tool manipulation

We first simulate a peg-transfer setup where a plastic ring is
to be manipulated by the robot from one peg to another,
which is commonly used in surgical skill training for novice

Figure 6. Conceptual illustration of different types of motion
behavior achievable by using the GVM structure. The orange
curve indicates the guided motion by the dynamic X g through
different types of motion (black dots as the states, dashline as free
manipulation motion, and parallel solid lines as motion with
determined path).
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surgeons. The initial/final state of the pegs is usually se-
lected that corresponds to awkward robot configurations
(i.e., either near-singularity or near-limit joint states). The
robot trajectory needs to experience large-range orientation
adjustment in order to align the ring to the peg to finish the
manipulation properly, which might be hard to plan within
confined space. To verify the validity of our framework to
tackle such extreme scenarios, we assign three typical cases,
as shown in Figure 9:

· Case I: Transfer the ring from a horizontal peg to an
adjacent vertical peg.

· Case II: Transfer the ring from a horizontal peg to an-
other horizontal peg by twisting the shaft through
180 degrees.

· Case III: Transfer the ring from a vertical peg to another
vertical peg by twisting the shaft through 180 degrees.

The target states of the robot are known and remain static
at this stage of simulation. The process is actuated using
Mode III for our proposed SMP. Particularly, the differences
between initial and final positions of the distal joints qw1,
qw2, and qt in three cases are [1.16, 1.487, 2.1]

u rad, [1.672,
2.294, 1.296]u rad, and [�2.853, 0.732, 2.2002]u rad,
respectively, which indicate an average of > 100° motion
for each distal joint in each case. The results show that the
DS-based framework could simultaneous plan and control
the instrument’s motion through twisted motions and reach
the target configuration in all cases. The guaranty of global
unique solution in Proposition 2 in our new robot model, the
instrument smoothly reaches the target pose without being
trapped in false equilibriums, which might appear in
optimization-based approaches due to the nonconvex
workspace manifold. Meanwhile, the trajectory remains

Figure 7. The five modes of behaviors (MoBs) proposed based on our planning and control framework to define individual motion steps
in various tasks. Mode I: free reaching, Mode II: constrained retraction with free reaching, Mode III: constrained reaching, Mode IV:
constrained retraction and reaching, Mode V: trajectory tracking.

Figure 8. Demonstration of complete pipelines of various independent surgical tasks which could be fully formulated by our framework
using the five MoBs for task automation.
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feasible despite the target joint positions of specific joints
being adjacent to its limits. We compare the resultant joint
actions with and without deploying the SMA (as shown in
Figure 10. Without SMA, the distal joint motions tend to
overshoot from its final positions before convergence. This
might result in exceeding joint limits ((e.g., qt in Case I and
II, and qw2 in Case III, note that the joint limit of qw2 and qt
are both ± π/2 rad, illustrated by gray shaded areas). The
convergent performance is also not affected by the se-
quential actions.

Then, we verify the capability of GVM to inherently
avoid unnecessary contact to the target during manipulation.
The main symbol of inadvertent tool-target collision is the
time instant(s) that the end-effector position goes behind the
target contact point, which is mathematically interpreted by
the following metric:

f :¼ hgxt, z!g

�
< 0 (37)

Guiding the end-effector through §p and §c by im-
plementing GVM avoids f < 0 throughout three cases (refer
to the dark green curves in Figure 11). Without GVM, the
end-effector will intrude the target area (shown in Figure 11
the red curve segments) during manipulation which could
damage the tissue in real surgical procedures. GVM allows
the twisted motions to be properly adjusted first safely away
from the target before reaching it. Note that such perfor-
mance is not particular to the selected cases, but could be
easily guaranteed upon proper setting ofX p according toX c

in (27) could guarantee Note also from Figure 11 that a
reactive X g does not affect the convergent performance of
instrument manipulation.

7.3. Scene II: Dual-arm collision avoidance

Then, we investigate the applicability of our algorithm to
deal with collision avoidance. Aiming for a common but
challenging scenario in robotic surgery, we consider a tool-
tool collision situation where two robotic instruments are

manipulated to their respective targets, respectively, and
have to move close to each other within shared workspace.
The initial and final states of two instruments are defined
such that their trajectories will make the robot skeleton
collide to each other if no avoidance is actuated.

Figure 12 shows the setup of this scene and the simu-
lation snapshots for the dual-arm manipulation considering
tool-tool collision avoidance. Our framework allows si-
multaneously dual-arm collision avoidance as the planning
strategy is decentralized. The minimum tolerant distance is
set to 10 mm as the tool shaft size is 8 mm, leaving the
minimum tool-tool distance to be 2 mm. Both two instru-
ments start collision avoidance as soon as the process begins
and consider the other one as the moving obstacle. By
inspecting the instant nearest obstacle point on the skeleton,
two shafts move around each other and retract the distal part
to prevent the whole robot from collision. After the other
instrument stays clear from its target, the instrument pro-
ceeds on the tool-centric action and target-centric action.

Figure 13 shows the resultant dual-arm trajectories. For
comparison, the trajectories for direct target reaching are
shown as well. It is clear that to avoid collision, the tra-
jectories are more complex, but remain smooth and do not
affect the subsequent target-reaching process where a
constrained path is required. The collision avoidance input
only applies on demand when the obstacle obstructs target
reaching, and will smoothly fade once the obstacle is clear.

7.4. Scene III: Perturbed interaction

In this subsection, we validate the motion performance of
the instrument when reacting to different target situations
led by the GVM. A typical action during surgery is to
manipulate the instrument’s distal tool from a safe idle
configuration to contacting a target object, usually for
grasping purposes. The contact must be made via a proper
reaching pose to ensure safe tool-target interaction.We use a
half-circle (or 1/2) surgical needle as a target, where the
robot aims to grasp the needle body at its two-thirds cur-
vature point as a standard needle pick-up procedure. The
needle is attached to a support to visually emphasize its pose
change during simulation, which is also known to the ro-
bot’s base. Again, we apply Mode III motion behavior to the
instrument, where X g moves between Xp and X c subject to
on-the-fly regulation of τ. X p is assigned with the same
orientation as of X c but with a negative z-axis offset po-
sition from the grasping point. Figure 14 illustrates the tool
reaching process of the instrument from its idle position
[�116.04, 16.85, �56.13]u mm to the ideal needle
grasping point [�135.68, 18.60, �61.17]u mm. The tra-
jectory of the end-effector indicates that the robot performs
tool-centric action that guides the tool to the pre-grasp pose
first with τ maintaining close to 0. While X g is nearly
aligned withX p, the GVP τ adaptively transits from 0 to 1 to
further allow the instrument to eliminate the remaining
distance for contact, that is, proceeding to target-centric
action. Note that during such action, the orientation of the

Table 2. Parameter setting of our algorithm in simulations.

Parameter Value

Γ
2
4 0:1 0 0

0 2 0
0 0 2

3
5

lh ½�1 0 0 �u
lv ½ 0 1 0 �u
M ½ 0 0 1 �u
k1 × (random)
k2 0.2
k3 1
k4 1
Γ 0.05
Κ 0.5
ϵ 0.01
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distal tool remains unchanged despite the varyingX g at the
final phase of contact motion, which helps achieve a proper
tool-target contact configuration. It is also shown in
Figure 15 that the regulation of the end-effector’s orien-
tation is already settling (with the robot approaching X p)
before the target-centric action begins (with the robot
approaching X c). This allows the tool to be “well-pre-
pared” in advance to delicately reach the object, which will
be shown later in our experiments to improve task-level
reliability.

We next study how GVM will react to a target under
different situations. The target pose of the robot might be
perturbed, where the disturbances could be from sensoring

noises or physiological motions during surgical proce-
dures. We add uniform random noises to the target 3D
position with the magnitude of 0.003 mm for all axial
directions and is deployed throughout the process. The
orientation remains unchanged at this stage. The com-
parison of the target-reaching motion performance with
and without applying noises is shown in Figure 15. It is
clear that the perturbed setting results in not only longer
convergent time of the tool’s position et, but also re-
maining a stabilized position difference (denoted by et,s)
from the ideal contact point. This results from the un-
trackable noise which makes the robot controller hard to
converge η sufficiently to 0, and thus prevent τ from

Figure 9. The three cases of pose-to-pose manipulation for simulated peg transfer tasks where the instrument needs to drastically twist
the wrist. The end-effector trajectories are visualized from green to red along the evolution of time.

Figure 10. Evolution of distal joint positions for three cases of complex manipulation. The gray areas denote the�π/2, π/2 feasible joint
range available to both q5 and q6, where motion control without SMA tends to overshoot the joint positions before convergence, which
might enter unreachable regions under near-limit configurations.
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settling to 1, although the orientation convergence is not
affected. This indicates the noisy target could lead to an
“inconfident” targeting attempt by our planning and
control framework.

To further study the robot motion behavior using our
system to deal with target disturbances, we apply different
noises to the identical setup and further obtain the rela-
tionship between the et and the noise configurations, shown
in Figure 16. Obviously, larger noises indicate larger sta-
bilized position error et,s from which the relationship is

relatively linear. Meanwhile, selecting smaller gain κ that
tunes the reaction of _τ to η will lead to decreased et,s. This is
because a smaller κ relaxes the condition of position
alignment between X to X g and ease τ to move to 1. When
the noise magnitude is elevated to a certain turning point,
the stabilized position rapidly increases but remain linear
afterward. This is caused by the τ rewinding from nearly
1 to�1 due to the noise-induced misalignment of the tool to
the target (or the unsettled η. X g then returns to X p to make
easier for the robot to reach and thus automatically creating

Figure 11. Instrument end-effector position error during target-reaching manipulation in the three cases with and without using GVM-
based guidance. The red parts indicate the time instants where target intrusion happens (i.e., f < 0).

Figure 12. Simulation snapshots of dual-arm manipulation for ring grasping with tool-tool collision avoidance that evolutes as a)-d). In
d), the back-projected instrument end-effector positions are shown that move from green to red.
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a new balance. As the change of X g ’s orientation provides
extra disturbance to the position of X p, the turning point of
et,s upon increasing κ comes earlier, while the level-off et,s is
also higher than that without orientation noise. However, the
maximum et,s under different configuration will not exceed
d in (35), as in the worst case, τ will only drop to 0. The
above performance reflects that the disturbance of the target
state could significantly change the motion behavior of the
instrument when attempting to reach the target. Target
perturbation will make the strategy cautious when per-
forming the target-centric action, and might even abandon it
if the disturbance is severe enough due to the impossibility
to settle η to a. The instrument will still settle to X g with a
contact-ready orientation upon tool-centric action, but then
keeps a (preset) safe distance from the target. If the noise
magnitude becomes small, the robot controller is still able to
converge η close to 0 such that τ maintains positive as in
(30). The strategy is then “confident” enough to guide the
end-effector to the X c, or the final contact pose (e.g., d <
2 mm or so). Note that among all the above cases, a sta-
bilized X and X g is always achieved. The performance of
the GVM using the proposed framework remains stable
regardless of the noises being added.

7.5. Scene IV: Target-varying interaction

Finally, we conduct simulation based on Scene II to study
how our framework could deal with a moving target. The
instrument might reach a target which is being moved by
another instrument (e.g., needle hand-off in wound sutur-
ing) or need to follow specific trajectories, such as needle
insertion into tissue and palpation through tissue surfaces.
The target is either moving or to be moved after being
grasped. Here, we propose the following three typical cases
that cover different target motion types to further evaluate
the applicability of our framework to different manipulation
strategies:

· Reaching an intermittently moving target along a linear
trajectory with unchanged orientation.

· Reaching a continuously moving target along a pose-
varying trajectory (moving position and orientation).

· Tracking an arc-shape trajectory (moving position and
orientation).

The first and second cases that correspond to decen-
tralized dual-arm coordination for target hand-off are set. In
the first case, the final contact position xc (or the needle)
moves from [�102.59 � 86.77 � 62.46]u mm to
[�163.49 � 85.99 � 58.49]u mm through a straight line
but halts at the midpoint for 100 steps. The movement starts
at t = 180 and the overall travel distance is around 60 mm.
The target orientation is [2.70130.5169 � 1.8761] and
remains unchanged. The translating velocity of the needle is
set to 0.1 mm per step. In Figure 17(a), the end-effector
trajectory is first adjusted for tool-centric action for target
orientation alignment, and then proceed to target-centric
action while τ is moving to 1. However, after the needle
starts to move (in orange), the misalignment between the
tool and the target makes contact process immediately
suspended, where the instrument position rapidly moves
back to X p and track the needle’s pose with a stabilized
distance d. While the needle temporarily stops, the in-
strument attempts to reach the target again, and is suspended
again as the needle moves. Finally, after the needle comes to
its final stop, the instrument manages to reach the final
contact point as τ eventually settles at 1.

Case II is similar to Case I but with 6-DoF pose change
over time. By reserving the translation motion of the needle,
we add rotary motion of the needle with respect to its own
frame, that is, 0.15* sin 0.025t rad along y-axis and
0.25* sin 0.025t along z-axis. The motion starts at t =
150 and continuously lasts for δt = 600. As shown in
Figure 17(b), the end-effector manages to track the moving
X g induced by X c without contacting the needle. When the
motion disappears, the tool is finally guided to the contact
point where the needle could be directly grasped.

In Case III, we show how GVM contribute to stable
trajectory tracking of the instrument. We first define an arc-
shaped trajectory whose distance to the rotation center is
15 mm, and the total equivalent rotation range is 2/3π. Such

Figure 13. Motion trajectories of two robotic instruments during
simultaneous ring grasping in Scene II (described by the base of
PSM1 in mm) with and without applying collision avoidance. The
green/red dots indicate initial/final positions of two robot end-
effectors, respectively.

Figure 14. Illustration of pre-grasp manipulation and final
constrained target contact planning and control upon evolution
of τ based on (30).
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needle insertion path is commonly used in MIS to minimize
tissue trauma during penetration. The GVP τ becomes the
parametric value that guides X g along the trajectory. The
robot will move to the starting point of the trajectory first
and then follow the trajectory as τ elevates to 1. While the
robot output meets disturbances, that is, deliberate deviation
of the tool from the prescribed path, the value of τ will not
move until the controller guides the tool back on where it
deviates from (illustrated in Figure 17(c)).

7.6. Summary of simulations

The simulation results demonstrate the motion-level be-
havior of our robot planning and control framework in
different scenes. Overall, the GVM method is validated to
be capable to dealing with the following three scenarios:

· Pose transfer through extreme configurations: The
planning and control motions remain feasible and

efficient to large-range pose adjustment ( > 100 av-
erage distal joint position differences) near joint
limits.

· Stable and reactive target contact: The robot motion is
guided via a bidirectional manner, that is, robot adap-
tively decides whether to reach or to stay clear from the
target by evaluating the on-the-fly tool-target
configuration.

· Smooth trajectory tracking: The robot is capable of
following a predefined path with controller disturbances,
where the tracking process automatically halts due to
path deviation and will proceed after the deviation is
cleared.
Basically, the framework provides a reactive planning

and control process which could be used to characterized
different types of elementary steps in surgical procedures,
and could lead to a “fail-in-safety” performance which
highly reacts to the on-the-fly information. This is essential
to further improve task-level reliability when automating a

Figure 15. Evolution of two examples of target reaching shows that orientation is alignment in tool-centric action phase and then comes
to translation to eliminate the remaining distance to avoid premature collision.

Figure 16. Stabilized end-effector distance from the final contact state X c under different tuning gain κ and different types of noises.
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sequence of motion steps in order to complete a task suc-
cessfully. The quantified results will be later addressed in
experiments.

8. Experiments and Results

8.1. System setup

In this section, we present results of on-site experiments
for the robot to automatically perform simulated sur-
gical tasks. We use a dVRK with two PSMs as the robot
platform. Both PSMs are equipped with LNDs, which is
a common type of instrument adopted when conducting
tissue arrangement and suturing in RAMIS. Both in-
struments have a 7-DoF joint set with the first four
accounting for the RCMmotions for minimally invasive
setup, the middle two joints for providing wristed
motions, and the last DoF for controlling the tool ac-
tuation (or the jaw opening angle). The physical setup is
shown in Figure 18. We use a Core i7 3.4 GHz user-side
PC controller (with 156 GB RAM and without GPU
acceleration) which connects to the robot controller
with TCP/TP. The cisst/SAW software environment is
used and the algorithms run in MATLAB 2020b under
the Robot Operating System (ROS). A pair of
industrial CMOS cameras is used for online visual
feedback data acquisition with 640 × 480 resolution
and 30 frames per second. The base position of the two
robots (i.e., the RCM) is set such that their distances
to the target to be operated are both around 150 mm,
which is commonly adopted in the clinical practice of
RAMIS. The camera is fixed between two PSMs, which
is a typical setup scale for multi-port RAMIS (Escobar
and Falcone, 2014). The positions of the left
camera relative to PSM1 and PSM2 are [34.5, 70.2,
39.1]u mm and [66.9, 104.6, 51.60]u mm, respec-
tively. The overall control loop of the system is around
20 Hz without software acceleration. The robot end-
effector motions are saturated to 0.8 mm per step,
which indicates a maximum 16 mm/s linear velocity for
the tool.

We define the jaw angle to stay 0 during tool-centric
actions because the 7th is not considered in tool-centric
actions. While the instrument enters target-centric actions
(with τ > 0 and _τ > 0), the jaw angle smoothly opens to a

predefined angle (30°) and will only close when τ → 1.
When inverting the trajectory, the above sequence will be
toggled accordingly. This applies to any elementary motions
which involve Modes II, III, and IV.

Several sensing algorithms are required for provid-
ing accurate 3D information to facilitate task comple-
tion is introduced in this subsection. The focal lengths
of the two cameras are tuned to 30 mm.5 The image
resolution of both cameras are set to 640 × 480 which
acquire video streams both at 30 frames per second. The
stereo camera has been calibrated in advance (Zhang,
2000) with its backprojection being 0.1582 pixel upon
data acquisition of 30 pairs of sample images. The
camera-robot transformation has been calibrated using
the method based on our previous work (Zhong et al.,
2020) to all the engaged PSMs. The performance of our
framework is systematically assessed by respectively
performing single-arm tasks like debridement and
membrane dissection, a dual-arm task like suturing.
Task effectiveness in terms of efficiency, success rate
and accuracy will be validated.

8.2. Task I: Debridement

The first scenario simulates the surgical tissue de-
bridement procedure, which is designed to illustrate the
performance of our framework to automate repetitive
reach-and-grasp motions of the robotic instrument to
different individual targets. We fabricate a group of
L-shape silicone gel blocks to simulate tissue debris.
Each block has a bounded 12 mm cube of size which
simulates a plumped piece of tissue with a graspable
edge, and is attached by a unique fiducial marker of
AprilTag (Olson, 2011) with 25h9 tag family for 6-DoF
target localization and multi-target identification. The
target is online detected and tracked during the task. We
apply the MoB to be Mode II (refer to Figure 8) for
automating the block reaching with grasping and Mode
III for retracting with tissue releasing for debris col-
lection to a plastic plate.

We design a multi-block debridement task to be
completed by PSM 1. The blocks are random placed within
a rough volume of 50 × 50 mm2 table surface, whose
orientation are randomly settled as well. As all the blocks
are identical in sizes, their poses are online tracked by

Figure 17. Resultant trajectories of the instrument in all three cases in Simulation Scene III. The orange and blue curve represents the
target and the instrument’s end-effector position, respectively. The curve with changing color between green and red is the trajectory of
the pre-grasp point, or the position evolution corresponding to Xp.
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using the fiducial markers to generate grasping configu-
rations. Their pick-up sequence is then randomly assigned
to avoid adding bias to statistical performance analysis.
The releasing pose Trel of the robot’s end-effector for
debris collection is assumed constant with

Trel ¼

2
664
�0:924 �0:222 0:310 0:117
�0:176 0:970 0:170 �0:050
�0:338 0:103 �0:936 �0:0527

0 0 0 1

3
775 (38)

that is, 138.4 mm distance from the robot base. The tool’s
opening DoF is controlled for after the current manipulation
step is completed.

We have conducted ten trials of six-block debridement
and ten trials for four blocks. As the main goal of the task
is to clear the blocks from their initial positions, we
evaluate the quality of this task by assessing the overall
success rate of the whole task and the time distribution for
each pick-up step. Figure 19 illustrates the snapshots of
two trials of six-block trials. The overall success rate for
the six-block and the four-block cases are all 90%, that is,
both 9 out of 10. Note that for each case, we rearrange the
blocks by random placement. Despite different poses, the
instrument manages to collect all blocks smoothly. The
algorithm could guide the instrument adjacent to the
block first and then finalize the contact reaching to
achieve a safe grasp thanks to the GVM scheme. It avoids
premature tool-target collision during tool-centric action
phase which can prevent the tissue from being dislocated
or being damaged unexpectedly. This is important as it is
normally difficult to track the instant change of tissue’s
position shortly before contact due to visual occlusion.
We also show in Figure 20 that during the grasping at-
tempt, inaccurate instrument localization might unex-
pectedly deviate the target from its initial position. Our
framework could rapidly react by stating clear from the
target first and initiates further adjustment. As long as the
target is detectable, the instrument will start another at-
tempt once the tool-target configuration is desirable
again. Figure 21 shows the average execution time of
each motion step during the task. The median duration for
collecting each block is 12.8/11.9 s for four/six block

trials. The four-block cases take longer time to complete
one debris collection, as the more scattered placement of
the blocks leads to longer instrument travel distances. The
random block setting does not significant affect the
completion time for each attempt, which shows good
consistency.

8.3. Task II: Tissue membrane dissection

We next set up an experiment to simulate the dissection task
to a tissue membrane, which is a typically demanded in
surgeries involving organ removal like laparoscopic cho-
lecystectomy (Reynolds Jr, 2001). The task includes highly
repetitive cutting sub-steps in order to dissect the superficial
layer of the tissue via a prescribed trajectory. We use a soft
handkerchief paper with average thickness of 1 mm as a
phantom tissue layer. The layer is fixed by a static support
which keeps the tension of the surface to simulate the
connectivity of the target to surrounding tissues and to
reduce tissue deformation. PSM2 is used to perform the task
using the Potts Scissors instrument to provide cutting shear
force to the target. The tissue is of size 90 mm * 80 mm, and
the dissection path on the tissue is marked by a red line that
goes across the layer surface. We set two types of path, one
starts from the short edge and ends at the opposite one (with
total length of 90 mm), and the other spans diagonally to the
midpoint of the long edge (with totally length of around
60 mm). The 3D positions of the path endpoints are detected
first using the stereo camera and then are used to interpolate
the path profile by comparing the backprojection error with
respect to the observed one. Finally, and the interval dis-
tance dc to between consecutive cutting steps is computed to
determine the cutting points. For empirical experiences, we
select such distance to be dc = 3 mm, which indicates a 30-
time cutting motion sequence for a 90 mm path and 20 cuts
for 60 mm path.

We have conducted five consecutive trials for this task.
Three trials are set We use Mode III to perform the dis-
section procedure (could be also solved by Mode IV but
slightly slower) and the clamping motion of the scissors is
done after settling the manipulation. The setting of dc is set
smaller than the length of the scissors (around 9 mm)
allows a backward shifting before proceeding to the next
step to avoid the tissue-tool adhesivity to after each cut-
ting. During the procedure, the instrument automatically
plans and dissects the phantom layer progressively through
repetitive cutting steps and separates the layer in half via
the labelled paths. Figure 22 shows the snapshots of the
recorded clips of the real-time automated dissection pro-
cess using a single instrument. The robot successfully
completes four out of five trials with the overall success
rate thus being 80%. The failure case is caused by tool-
tissue entanglement with uncontrollable path deviation.
The average duration for executing the whole task is 81.1 ±

Figure 18. The experimental setup.
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1.2 s and 54.3 ± 0.9 s for the 90 mm case and 50 mm case,
respectively. The time cost for performing each single
cutting step is 3.9 ± 0.3 s. The dissected layout of the
phantom tissue layers are shown in Figure 23. Upon
manual measurement, the maximum lateral deviation from
the prescribed linear path is around 1.5 mm for both 50 mm
and 90 mm case (we assume the highest resolution for
measurement is 0.5 mm as the smallest scale of the used
ruler is 1 mm).

8.4. Task III: Wound suturing

We finally conduct autonomous dual-arm multi-throw
wound suturing as a comprehensive evaluation of our
framework to perform complicated tasks. The task appears
in most surgical interventions, where a suturing needle is
guided through wound edges for tissue approximation and
wound closure. The guideline is characterized by our

framework in Figure 8 into seven individual steps for each
throw.

8.4.1. Scenario setting. To construct the setup, we use two
PSMs which are both mounted with LNDs as the surgical

Figure 19. Frames of the simulated debridement task using a single robotic instrument. The red and green robot skeleton represents the
backprojected layout of the instrument’s current and tissue releasing configuration on the camera image. The Cartesian frame of the
instrument’s end-effector (i.e., the tool) and the blocks are also visualized.

Figure 20. Target uncertainty during task execution, where the block is unexpectedly deviated to a new position (deviated motion
marked in orange arrows) due to premature tool-target collisions. The planned/re-planned tool position is conceptually denoted as
yellow arrows.

Figure 21. Motion step durations during debridement, where the
number 4/6 indicates the number of fragments, and the subscript
1/2 denotes the reaching/collecting motion of the fragment,
respectively.
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tools. To regulate the in-hand needle grasping position,
we adopt the work in Sen et al. (2016) that uses 3D-
printed PVS needle holder mounted along the jaws to
enhance needle manipulation accuracy. The stereo
camera is placed between the two distal tools as a three-
point invasion in typical laparoscopy (Horgan and
Vanuno, 2001).

Two types of tissues are used in our experiments. The
first type is the artificial soft tissue that consists of two
layers, the outer layer to simulate tissue skin and the inner
layer for the dermal structure. Both layers are made from
synthetic gel. We also prepare a piece of porcine tissue by
using two separate parts to create a lumped wound for ease
of selecting needle insertion orientation. The tissues are
both fixed on a support to prevent unnecessary movements.
The positions of the wound edges are computed from the
user-input wound endpoints via stereo images. In addition,
we introduce two parameters: the stitching width dw that
denotes the distance between the needle’s entry and exit
point on the tissue, and the throw distance dt that denotes the
(ideal) parallel distance of the suture between consecutive
throws. Without loss of generality, we set dw = 10 mm and
dt = 5 mm as a resembling scale setting in standard robot-
assisted surgical training procedures (Garcia-Ruiz et al.,
1998).

8.4.2. Single-throw suturing. We first show the capability
of our framework to complete a single-throw pipeline in

suturing. Figure 24 shows the snapshots of individu-
al motion steps of a single-throw pipeline on the ar-
tificial tissue. The needle’s insertion and exiting
point on the tissue is directly assigned by user input
that yields the preset dw and dt. The instruments start
from preset idle configurations which are cleared from
the target tissue. The manipulation in each step is
converged to the goal configuration with ||η|| down to a
scale ϵg before proceeding to the next step. To perform
target-centric action to the needle during targeting,
the tool-needle transformation is computed using
image-based needle pose detection at the start of a
throw. During needle hand-off, two instruments work
in a decentralized manner, where PSM2 guides the
needle to a precomputed hand-off pose on top of the
wound, with PSM1 automatically track the motion of
PSM2 to decide a proper hand-off configuration subject
to GVM scheme. An example is particularly shown in
Figure 25 that demonstrates the decentralized needle
hand-off process by human–robot collaboration. The
complete parameter settings for this scenario are shown
in Table 3. Note that the pipeline in a single throw
covers target contact (e.g., grasping the needle), tra-
jectory tracking (e.g., needle insertion/existing), and
dual-arm coordination (e.g., needle hand-off). Due to
the theoretical proofs of trajectory feasibility and
motion stability, all the elementary motions are char-
acterized and automated, involving target contact
(including needle insertion, regrasping, and hand-off)
while the path avoids premature collisions to the
target tissue (refer to our supplementary video for
demonstration).

8.4.3. Multi-throw suturing. We define a five-throw su-
turing task for artificial tissue and a four-throw suturing
task on porcine tissue to comprehensively evaluate the
task-level applicability of our framework. The suturing
will be performed using single-continuous suture pat-
tern, which is a common and efficient type of suturing
technique in RAMIS. We do not include knot tying at the
end of suturing due to the complexity of detecting the
suture’s 3D topology, which is not the main goal of this
work. The needle’s insertion/exiting positions are

Figure 22. Frames of automated phantom layer dissection procedures. The first and second rows indicate the 90 mm case and 60 mm
case, respectively, through paths with different directions.

Figure 23. Demonstration so the dissected phantom layers placed
on the table with the prescribed cutting paths in red lines, and the
fixation points to the support marked in red dots.
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computed based on two virtual 3D markers (named as the
“wound positioners”) manually input by the users via
stereo images prior to the start of the task. The needle
insertion orientation is computable once the insertion
and exiting point is known (Pedram et al., 2017). Note
that we select dt as 8 mm for the porcine tissue to evaluate
task performance under different settings. The moving
distance of the suture pulling step is computed based on
its consumed length of suture in each throw, which is
generically given as 14 mm measured from teleoperation
based on the assigned dw and dt. Trials on each type of
tissue are conducted continuously to maintain identical
setting throughout the experiments.

We perform ten trials for each type of tissue, respectively,
under identical setting. The task-level assessment include
task success rate to evaluate reliability, duration of a single
throw and the entire task for in-process performance, and
resultant suture pattern accuracy for task quality. Figure 26
illustrates the frames of task execution process on both the
artificial and porcine tissue viewing from the sensing (left)
camera. The task is defined as “successful” only if the suture
passes through both edges of the wound for enough
times without user interference. The overall success rate
of performing five-throw suturing is 80% on the artificial
tissue (i.e., 8/10) and 70% on the porcine tissue (i.e., 7/10).
The failure cases are either subject to needle-suture

Figure 24. Step illustration of a single-throw suturing during task automation. From left to right: 1) idle (the start of a throw); 2) needle
(pre-entry) targeting; 3) needle insertion; 4) needle regrasping; 5) needle exiting; 6) suture pulling; 7) needle hand-off; and 8) resetting
(for starting the next throw).

Figure 25. When PSM1 is manually controlled by a user (with the shaky trajectory in red arrows), PSM2 stably tracks and makes contact
attempt (in yellow arrow) when the tool-target alignment becomes desirable.

Table 3. Task-relevant parameters of our framework for multi-throw suturing.

Pos. of idled PSM1/2
Pos. of first insertion/exiting
point

Pos. of last insertion/exiting
point Pos. of wound endpoints

Artificial
tissue

[0.131 �0.067 �0.054]u

[�0.091 �0.012 �0.045]u
[0.117 �0.066 �0.096]u

[�0.133 �0.044 �0.091]u
[0.111 �0.053 �0.090]u

[�0.122 �0.032 �0.095]u
[0.130 �0.066 �0.093]u

[0.116 �0.007 �0.060]u

Porcine
tissue

[0.116 �0.051 �0.055]u

[�0.099 �0.044 �0.091]u
[0.117 �0.074 �0.086]u

[�0.140 �0.042 �0.079]u
[0.103 �0.053 �0.082]u

[�0.123 �0.020 �0.078]u
[0.131 �0.071 �0.083]u

[0.119 �0.045 �0.081]u

*All positions (unit: m) are calculated relative to the respective robot base except the wound endpoints positions (from the camera).
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entanglement or missing the exiting point during insertion.
It could be further elevated to 90% (i.e., 9/10) for both the
artificial tissue and porcine tissue suturing, respectively, if
manual suture arrangement is provided during the task. Note
that the above data is calculated by directly regarding a task
as a failed trial once any step failure occurs during the
process. For step-wise failure, we manually halt the task
once a failed step occurs and rearrange the needle/suture
accordingly, and then let the robot proceed to the rest of the
task to compute the accumulative number of step failure. In
this case, a total of 5 motion failures during 10 trials of five-
throw suturing (or among the totally 640 motion steps),
which indicates 0.8% of motion failure.

Suturing the porcine tissue owns lower success rate, as
the tissue surface might encounter irreversible deforma-
tion after many stitches. The trajectories of the two in-
struments’ distal tool for completing such task are shown
in Figure 27. It can be seen that the in-process trajectories
maintain good consistency among individual throws
without unpredictable movements. Figure 28 demon-
strates the suturing accuracy on the artificial tissue.6

Figure 29 shows the time cost for completing individual
throws in the task. The average time of performing one
throw is 48.3 ± 1.4 s and 45.1 ± 1.0 s for artificial/porcine
tissue, with the time variation percentage for being only
2.9% and 2.2%, respectively, which shows good step-
level consistency. The average time cost for completing
each throw gradually decreases (shown in Figure 29), as
the decreased residual suture length lowers the travel
distance for suture pulling. Furthermore, we characterize
the outcome quality by manually measuring the deviation
of the insertion/exiting position accuracy. The total av-
erage accuracy is 1.7 ± 1.1 mm, with the maximum
2.0 mm of wound deviation as the number of throws
increases due to the irreversible deformation after several
trials. The deformation remains limited influence on su-
turing accuracy, and is regarded tolerable unless it causes
misplacement of the needle during insertion (which is
directly regarded as failure).

8.5. Overall assessment

In this subsection, we validate the task-level performance
of our framework by comparing with existing works
reporting either manual task operations by novice sur-
geons, or state-of-the-art automation approaches. We
focus on aspects including the time cost, the step/task
failure, and number of individual trials in each task which
are all metrics that reflect the task execution quality and
consistency during performance assessment (Martin
et al., 1997). The existing works which aim to auto-
mate the identical tasks (e.g., continuous debridement
and suturing) using the standard guidelines with articu-
lated surgical robots will be especially selected and
compared to ours as side-by-side analysis. Note that we
are unable to provide identical task-relevant parameter
settings for performance comparison, as many works do
not provide detailed parameter settings. The comparison
will be conducted based on their best reported results
as well.

We first summarize the duration performance from the
above experiments into time cost for completing each

Figure 26. Frames of dual-arm wound suturing using our framework on the artificial tissue (first row) and the porcine tissue (second
row). Each image is captured at the same moment in the step (during needle targeting in the first row and during needle insertion in the
next row).

Figure 27. Trajectories of the two instruments during the five-
throw suturing task, where the red/yellow/green/blue/purple
indicates the trajectories from 1st to 5th throw, respectively.
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task-relevant motion step (results shown in Figure 30.
The time cost for completing the different task-relevant
motions under different setups are shown in Figure 31.
We calculate the variation percentage of the duration for
each step in terms of the average time cost is 3.3%/4.5%

for the 4-/6-block debridement, 3.7%/3.7% for the 5/
8 mm dissection procedure, and 1.8%/1.4% for the four-/
five-throw suturing on the artificial/porcine tissue, re-
spectively. They indicate good consistency of robot’s
planning and control performance under different setups.
As there are current no existing works that automate
different surgical tasks, the performance could be used as
a benchmark for future works to refer to for multi-task
automation.

We have also listed results among different works in
terms of setups, the time cost, and the accuracy (if
available), where the results are shown in Table 4. For
comparing task duration, we post-process the data of each
work by computing the average time to execute one single
step for each task (as shown in the data in blue font). Our
framework takes averagely 6.2 ± 0.3 s to finish collecting
a single fragment in debridement, which is slightly faster
than many of the results using manual operations by
novices, but a lot greater in time consistency. Regarding
suturing, our framework takes averagely 46.7 ± 1.3 s for a
single-throw suturing throw on the assigned tissue sur-
face (maximum tool velocity currently set to 16 mm/s),
which is significantly more efficient (mostly 1.5-2 times
faster) than manual operations, and the time variation is
more than an order of magnitude smaller. Note that we are
also the first to conduct five-throw suturing on phantom
tissue and also the first to use wristed robotic instruments
for multi-throw suturing on porcine tissue. The perfor-
mance is mainly attributed to a close-form solution for
integrated motion planning and control framework,
which owns looping time of < 1 ms without software
acceleration, and does not involve data-driven knowledge
or iterative computations. Although the works appeared
in Table 4 own different setups and the performance
might not be compared with identical scenarios, we show

Figure 28. The suture pattern on along the tissue wound edges after five-throw suturing (left-upper three: results on artificial tissue; left-
bottom three: results on porcine tissue), and the manually measured suturing accuracy on the insertion/exiting positions (the right
figure).

Figure 29. Duration required for each throw for suturing an
artificial tissue and a porcine tissue, respectively. The gradual
descent appears via consecutive throws in attributed to the shorter
residual length of suture and thus shorter suture pulling distance
under saturated tool velocity.

Figure 30. Comparison of duration of individual motion steps in
different surgical tasks (D indicates debridement task, C
indicates dissection task, S indicates suturing task).
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Table 4. Comparison of manual/robot-assisted/autonomous tasks execution in physical environments. The time cost in blue font indicates the
computed equivalent time cost for each elementary procedure in a task. Failure rate (column "Fail”) is computed with average number of failures
per task and/or total accumulative failure percentage (N.A. indicates that the data is not given or uninterpretable).

Works

Tasks

Debridement Suturing

Target Qty. Time cost (s) Fail Setting Qty. Time cost (s) Fail

Garcia-Ruiz et al.
(1998)

Bead 10 M 68±32 (6.8)
RZ 183±42 (18.3)

5%
3%

Needle 2-O
Width 10 mm

4 M 154±40 (38.5)
RZ 605±57 (151.25)

8%
8%

Dakin and Gagner
(2003)

Peanut 10 M 53.5 (5.35)
RZ 128.5 (12.85)
RD 61.0 (6.1)

2.22
(22.2%)

3.11
(31.1%)

2.44
(24.4%)

Needle 4-O
Width 5 mm

4 M 172.0 (43.0)
RZ 426.1 (106.5)
RD 236.2 (59.1)

3
2.56
1.78

Hubens et al. (2003) Ring 1 M 19.0±5.7
RD 9.5±8.7

2.25
0
*median

Needle 4-O
Width 5 mm

4 M 356.4±112.6 (89.1)
RD 60.5±39.2 (15.2)

38
2

Shah et al. (2009) N.A. Needle 20 mm Width
5 mm

4 RZ 258±93 (64.5) 53

Fard et al. (2018) N.A. Needle 4-O Width 5 mm 4 RD 126.84±55.86
(31.7)

N.A.

Kehoe et al. (2014) Foam 1 M 29.0
AR 91.8

5.0%
8.7%

N.A.

Mahler et al. (2014) Foam 1 AR 15.8 N.A. N.A.
Seita et al. (2018) Seed 8 AD 57.62 (7.20) 10 (8.3%) N.A.
Leonard et al. (2014) N.A. Needle 3-O

Width 10 mm
9 M 560.4±358.6 (62.3)

RD 342.6±226.2 (38.1)
A* 64.51±0.81 (7.2)

N.A.

Sen et al. (2016) N.A. Needle 39 mm
Width 5 mm

4 M 136.85 (34.2)
AD 383.00 (95.8)

50%

Pedram et al. (2020) N.A. Needle 30.55 mm
Width 16 mm

1 AR ∼200 N.A.

Ours Syn-
Gel

6 AD 48.8±1.3
(6.2±0.3)

0.1
1.7%

Needle 34 mm
Width 10 mm

5 AD 243.5±1.9
(46.7±1.3)

0.5
1.4%

Notation of task setting in the “time cost” columns.
First letter: 1) M: manual execution with regular instruments; 2) R: robot-assisted surgeon-centered execution; 3) A: autonomy.
Second letter: 1) Z: Zeus robot; 2) D: dVSS/dVRK; 3) R: Raven Robot; 4) *: other types of robots.

Figure 31. Time consistency of completing task-relevant motions with different settings (D/4 and D/6 denote 4-/6-block debridement, C/
5 and C/5 denote 50-/80-mm dissection path length, SA and SP denote suturing on artificial/porcine tissue, respectively.
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the capability of our work to be a baseline for generic
surgery autonomy.

9. Discussions and Conclusions

In this paper, we have presented a generic planning and
control framework to automate different types of surgical
tasks. The framework systematically addressed both
surgery-specific motion safety and task-level characteriza-
tion, which has been weakly explored. The DS-based
controller with SMA globally guarantees the step-level
motion stability and trajectory reachability via Lyapunov
stability using NSS as system states. The model is efficient,
differentiable without iterations, and can solve constrained
trajectories without high-dimensional workspace analysis.
Meanwhile, the GVM provides adaptive re-planning that
guides the robot through constrained path to contact target
properly based on on-the-fly situations. The framework was
then extended to construct complete pipelines of various
surgical tasks including single-instrument tasks like de-
bridement, tissue dissection, and dual-instrument tasks like
suturing.

The proposed framework has been validated through
simulations for performance study, and then through ex-
perimental study on three different surgical tasks (but not
limited to). The performance comparison shows that our
results own good task efficiency, reliability, and perfor-
mance consistency that outperform manual operations by
novice surgeons and state-of-the-art automation algorithms.
Despite the absence of detailed parameter settings provided
by existing works, our still represents the farthest step of our
framework to generically handle continuous multi-step
suturing and debridement. The framework could be used
when the camera is moving, which commonly appears in
surgery, as long as the RCMs of the endoscopic camera and
the instrument is not changed. It could potentially be
adopted to larger domain of robot-enabled surgical tasks
that require more complicated end-effector motions with
wristed profiles.

We also address several limitations in this work. We do
not actively regulate the online tissue deformation induced
by the task motions. This is reported in our suturing ex-
periments that might result in failure of the task due to the
inaccurate needle insertion. This could be solved by inte-
grating tension information to formulate the tissue’s dy-
namic change. One could either directly measure the tool-
tissue interaction force (requiring force sensors which could
not be achieved by dVRK), or to adopt vision-based
tracking of tissue deformation using trackable surface
features (mostly individual points). The deformation rela-
tive to its resting state could be online monitored to estimate
the (relative) tension. Excessive deviations could be
modelled as repellent factors and avoided by intermediate
poses in goal-varying manipulation. Meanwhile, the
camera-robot transformation is pre-calculated using effi-
cient autonomous calibration approach in Zhong et al.
(2020). It is not updated during the task, where the

leading positioning error of the instrument (even though not
significant) is not online refined, but currently being capable
of obtaining good task success rate. Once it could be up-
dated to minimize the residual positioning error, the motion
accuracy apart from the planning and control framework
could be further improved, which is currently our
ongoing work.

There are several directions extendable from this work.
The task-level performance and assessment results could be
used as a benchmark to be addressed by future approaches
under such setting. We are also developing learning-based
perception algorithms to localize target surgical areas such
that our framework could be applied to complex surgical
environment that targets clinical applications. Moreover, we
would like to explore active tissue deformation regulation
during task automation to further improve task-level reli-
ability under dynamic/uncertain physical situations.
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Notes

1. Examples of robotized surgical instruments that adopt the
design of the wristed structure include da Vinci Xi (In-
tuitive Surgical), Versius (CMR Surgical), Micro Hand S
(Weigao Group Medical), and RAVEN (Applied
Dexterity).

2. While satisfying (7), for sake of simplicity, we define the node
vectors and the end-effector frame axes (using DHc) such
that H = I3×3 and ks = kw = kt = 1.

3. The approximation is ensured by an additional assumption that s
must be continuously and stably guided to xsg . We will shortly
provide a DS that regulates s to satisfy such performance.
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4. Such setting of λ could guarantee a sequenced actuation process
using SMA especially when the instrument experiences weak
manipulability and/or extreme joint positions which could
result in drastic joint control input.

5. The Karl Storz 1 S stereo laparoscope owns a focal length of
15–200 mm

6. We only complete the suturing accuracy measurement to the
trials targeting artificial tissue, as for the porcine tissue, it
becomes difficult to find visual reference on its surface for
measurement after the task.

7. This assumption is made by assuming that the lateral moving
range of x t(q) is much smaller than ||x t(q)||, which is reasonable
in the confined intra-corporeal surgical workspace, as it tol-
erates much smaller lateral end-effector motions compared to
longitudinal motions.
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Appendix

Appendix A. Anatomy of “Weak Coupling” on a
Wristed Robot

We take the EndoWrist robotic surgical instrument
structure as an example. Recalling the robot kinematics in
(1) and (2), we use the skeleton nodes inN ¼ fn1, n2, n3g to
describe the 3D position of the end-effector as follows:

xt ¼ On1
��!þ n1n2

��!þ n2n3
��! (39a)

¼
2
4 q3
lw
lt

3
5u24 RsðqsÞrs

Rwðqs, qwÞrw
RtðqÞrt

3
5 (39b)

where lw/t denote the link lengths of the instrument and q3 is
length of the shaft that passes the RCM, rs=w=t compute the
directional vectors of the link’s centerline fixed in local
frame, xt is coincided withOe due to standard DHc, andR(�)
denote the rotation matrices. Differentiating (39) yields:

_xt ¼
2
4 q3SsðqsÞ þ RsðqsÞrs

lwRs
sSwðqwÞrw

ltRwðqs,qwÞwStðqtÞrt

3
5u24 _qs

_qw

_qt

3
5 (40)

where S(�) are the local Jacobian matrices; rearranging (39b)
further leads to the following factored form:

_xt ¼ L1A1ðqsÞ _qs þ L2A2ðqwÞ _qw þ L3A3ðqtÞ _qt (41)

where A1/2/3 are the interaction matrices, with L(�) being

L1 ¼
2
4 ls 0 0
0 ls 0
0 0 1

3
5,L2 ¼

�
lw 0
0 lw


,L3 ¼ lt (42)

which act as coefficient matrices during regulation of in-
dividual terms in (41). In robotic MIS, the recommended
insertion length of the instrument shaft that passes the RCM
(or the trocar entry), that is, q3, is around 150 mm to 200 mm
(Escobar and Falcone, 2014). The links of the wristed

structure (taking the Large Needle Driver provided by the
dVSS) are [lw, lt] = [9.1, 9.5] mm, respectively. This in-
dicates that practically, we can assume q3 � lw,t, which will
arise the following motion properties of the instrument upon
such kinematic constraint:

· Property 1. The position of the end-effector xt(t)
(i.e., n1) is roughly estimated as xs(t) (the position of n1)
under any feasible q(t):

xtðqðtÞÞ ≈ xsðqsÞ"qðtÞ s:t: q3 � lw, t (43)

which could be easily derived from (39) as the norm of n1n2
��!

and n2n3
��! could be neglected. This also indicates that the

adjustment of the end-effector position is dominated by qs,
as xs(qs).

· Property 2. If the end-effector motion space xt(q) is
highly restricted,7 the rotation matrix Rs(qs) could be
considered unchanged, that is,

RsðqsÞ ≈Rs

�
qs0

�
"q s:t: q3 � lw, t (44)

as xsðqsÞ ¼ RsðqsÞrs (43) is also restricted to a small
domain, leading _RsðqsÞ→ I3×3. Here, qs0 denotes the
static initial configuration of the robot prior to the control.
This also indicates that the adjustment of the end-effector
rotation is dominated by qw and qt, as RtðqÞ ≈
Rsðqs0ÞRw

wðqwÞRtðqtÞ.
To summarize, the adjustment of the instrument’s end-

effector position and orientation are dominated by different
(unique) set of robot joints in a relatively decoupled manner.
We name the them as the “weak coupling” effect during
robot motion control and is naturally available to any serial
robot manipulators with long proximal links and a wristed
end-effector with short distal links (e.g., yielding q3� lw,t in
this case). However, it should be noted that we only utilize
these approximations to design a well-performed robot
controller instead of direct analytical computation, as q3 <
100lw,t.
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